Wen-Ze Li , Yi Liu , Zhen-Yu Wang , Xian-Chen Meng , Peng Zheng , Jian Luan
{"title":"利用新型 Cd-MOF 制备 C 和 N 共掺杂 CdS 半导体光催化剂以提高光催化性能","authors":"Wen-Ze Li , Yi Liu , Zhen-Yu Wang , Xian-Chen Meng , Peng Zheng , Jian Luan","doi":"10.1016/j.jece.2024.114204","DOIUrl":null,"url":null,"abstract":"<div><p>The narrow bandgap value and long lifetime of photo generated charges make CdS exhibit higher photocatalytic activity compared to other semiconductor catalysts. Given the excellent optoelectronic properties of CdS, a novel 2D cadmium-organic framework (Cd-MOF) was obtained by solvothermal method, which was served as a precursor template in this paper. C and N co-doped CdS-T (T = 600/800/1000) semiconductor materials were successfully prepared by chemical deposition method under different high temperatures. The as-prepared materials had been characterized in detail. Furthermore, the Cd-MOF and CdS-T were used to conduct the photocatalytic activity of organic dyes. Among them, CdS-800 showed excellent photocatalytic degradation effects on five organic dyes, especially on RB with the photocatalytic degradation efficiency of 98.87 %, which was significantly improved 6.5 times compared to Cd-MOF (58.23 %). Free radical capture experiments have shown that •O<sub>2</sub><sup>−</sup> play a dominant role in the photocatalytic process. In addition, UV–vis diffuse reflection, photoluminescence (PL), photoelectrochemical (PEC) testing and density functional theory (DFT) calculations had shown that CdS-800 could effectively delay the recombination of photo generated charges, improve the rapid migration and separation of photo generated carriers, and enhance photocatalytic activity. This work provides new ideas for the preparation of efficient and recyclable CdS semiconductor photocatalytic materials.</p></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114204"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of C and N co-doped CdS semiconductor photocatalysts derived from a novel Cd-MOF for enhancing photocatalytic performance\",\"authors\":\"Wen-Ze Li , Yi Liu , Zhen-Yu Wang , Xian-Chen Meng , Peng Zheng , Jian Luan\",\"doi\":\"10.1016/j.jece.2024.114204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The narrow bandgap value and long lifetime of photo generated charges make CdS exhibit higher photocatalytic activity compared to other semiconductor catalysts. Given the excellent optoelectronic properties of CdS, a novel 2D cadmium-organic framework (Cd-MOF) was obtained by solvothermal method, which was served as a precursor template in this paper. C and N co-doped CdS-T (T = 600/800/1000) semiconductor materials were successfully prepared by chemical deposition method under different high temperatures. The as-prepared materials had been characterized in detail. Furthermore, the Cd-MOF and CdS-T were used to conduct the photocatalytic activity of organic dyes. Among them, CdS-800 showed excellent photocatalytic degradation effects on five organic dyes, especially on RB with the photocatalytic degradation efficiency of 98.87 %, which was significantly improved 6.5 times compared to Cd-MOF (58.23 %). Free radical capture experiments have shown that •O<sub>2</sub><sup>−</sup> play a dominant role in the photocatalytic process. In addition, UV–vis diffuse reflection, photoluminescence (PL), photoelectrochemical (PEC) testing and density functional theory (DFT) calculations had shown that CdS-800 could effectively delay the recombination of photo generated charges, improve the rapid migration and separation of photo generated carriers, and enhance photocatalytic activity. This work provides new ideas for the preparation of efficient and recyclable CdS semiconductor photocatalytic materials.</p></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"12 6\",\"pages\":\"Article 114204\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213343724023352\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724023352","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Fabrication of C and N co-doped CdS semiconductor photocatalysts derived from a novel Cd-MOF for enhancing photocatalytic performance
The narrow bandgap value and long lifetime of photo generated charges make CdS exhibit higher photocatalytic activity compared to other semiconductor catalysts. Given the excellent optoelectronic properties of CdS, a novel 2D cadmium-organic framework (Cd-MOF) was obtained by solvothermal method, which was served as a precursor template in this paper. C and N co-doped CdS-T (T = 600/800/1000) semiconductor materials were successfully prepared by chemical deposition method under different high temperatures. The as-prepared materials had been characterized in detail. Furthermore, the Cd-MOF and CdS-T were used to conduct the photocatalytic activity of organic dyes. Among them, CdS-800 showed excellent photocatalytic degradation effects on five organic dyes, especially on RB with the photocatalytic degradation efficiency of 98.87 %, which was significantly improved 6.5 times compared to Cd-MOF (58.23 %). Free radical capture experiments have shown that •O2− play a dominant role in the photocatalytic process. In addition, UV–vis diffuse reflection, photoluminescence (PL), photoelectrochemical (PEC) testing and density functional theory (DFT) calculations had shown that CdS-800 could effectively delay the recombination of photo generated charges, improve the rapid migration and separation of photo generated carriers, and enhance photocatalytic activity. This work provides new ideas for the preparation of efficient and recyclable CdS semiconductor photocatalytic materials.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.