{"title":"用适当的子群覆盖有限群中 p 元素的集合","authors":"Attila Maróti , Juan Martínez , Alexander Moretó","doi":"10.1016/j.jcta.2024.105954","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>p</em> be a prime and let <em>G</em> be a finite group which is generated by the set <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> of its <em>p</em>-elements. We show that if <em>G</em> is solvable and not a <em>p</em>-group, then the minimal number <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of proper subgroups of <em>G</em> whose union contains <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is equal to 1 less than the minimal number of proper subgroups of <em>G</em> whose union is <em>G</em>. For <em>p</em>-solvable groups <em>G</em>, we always have <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>p</mi><mo>+</mo><mn>1</mn></math></span>. We study the case of alternating and symmetric groups <em>G</em> in detail.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105954"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000931/pdfft?md5=35b9a89a7b1644f6cad2cea930c20904&pid=1-s2.0-S0097316524000931-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Covering the set of p-elements in finite groups by proper subgroups\",\"authors\":\"Attila Maróti , Juan Martínez , Alexander Moretó\",\"doi\":\"10.1016/j.jcta.2024.105954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>p</em> be a prime and let <em>G</em> be a finite group which is generated by the set <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> of its <em>p</em>-elements. We show that if <em>G</em> is solvable and not a <em>p</em>-group, then the minimal number <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of proper subgroups of <em>G</em> whose union contains <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is equal to 1 less than the minimal number of proper subgroups of <em>G</em> whose union is <em>G</em>. For <em>p</em>-solvable groups <em>G</em>, we always have <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>p</mi><mo>+</mo><mn>1</mn></math></span>. We study the case of alternating and symmetric groups <em>G</em> in detail.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"210 \",\"pages\":\"Article 105954\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000931/pdfft?md5=35b9a89a7b1644f6cad2cea930c20904&pid=1-s2.0-S0097316524000931-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000931\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000931","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 p 是素数,G 是有限群,由其 p 元素集 Gp 生成。我们证明,如果 G 是可解而非 p 群,那么其联合包含 Gp 的 G 的适当子群的最小数目 σp(G) 等于比其联合是 G 的 G 的适当子群的最小数目少 1。对于 p 可解群 G,我们总是有 σp(G)≥p+1。我们将详细研究交替群和对称群 G 的情况。
Covering the set of p-elements in finite groups by proper subgroups
Let p be a prime and let G be a finite group which is generated by the set of its p-elements. We show that if G is solvable and not a p-group, then the minimal number of proper subgroups of G whose union contains is equal to 1 less than the minimal number of proper subgroups of G whose union is G. For p-solvable groups G, we always have . We study the case of alternating and symmetric groups G in detail.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.