研究引入和使用 ChatGPT 后 L2 动机自我系统与技术接受模式之间的关系

Q1 Social Sciences
Jerry Huang, Atsushi Mizumoto
{"title":"研究引入和使用 ChatGPT 后 L2 动机自我系统与技术接受模式之间的关系","authors":"Jerry Huang,&nbsp;Atsushi Mizumoto","doi":"10.1016/j.caeai.2024.100302","DOIUrl":null,"url":null,"abstract":"<div><p>Since the introduction of the L2 Motivational Self System (L2MSS), numerous studies worldwide have highlighted its effectiveness in elucidating Second Language Acquisition. However, the influence of generative artificial intelligence (GenAI) technology on this model remains largely unexplored. The Technology Acceptance Model (TAM) is a widely employed framework for examining the impact of a new technology, and this study explores the intercorrelation when these two models are considered together. Conducted with 35 s-year university English as a foreign language (EFL) students in humanities, the study involved two sessions of instructor-led ChatGPT usage writing workshops, followed by the collection of survey responses. Data analysis unveiled a notable correlation between the L2 Motivational Self System and the Technology Acceptance Model. Particularly noteworthy is the finding that Ought-to L2 Self positively predict Actual Usage. The study discusses pedagogical and theoretical implications, along with suggesting future research directions.</p></div>","PeriodicalId":34469,"journal":{"name":"Computers and Education Artificial Intelligence","volume":"7 ","pages":"Article 100302"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666920X2400105X/pdfft?md5=7ea85e3b8e97e5831a851694fb6a8b69&pid=1-s2.0-S2666920X2400105X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Examining the relationship between the L2 motivational self system and technology acceptance model post ChatGPT introduction and utilization\",\"authors\":\"Jerry Huang,&nbsp;Atsushi Mizumoto\",\"doi\":\"10.1016/j.caeai.2024.100302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since the introduction of the L2 Motivational Self System (L2MSS), numerous studies worldwide have highlighted its effectiveness in elucidating Second Language Acquisition. However, the influence of generative artificial intelligence (GenAI) technology on this model remains largely unexplored. The Technology Acceptance Model (TAM) is a widely employed framework for examining the impact of a new technology, and this study explores the intercorrelation when these two models are considered together. Conducted with 35 s-year university English as a foreign language (EFL) students in humanities, the study involved two sessions of instructor-led ChatGPT usage writing workshops, followed by the collection of survey responses. Data analysis unveiled a notable correlation between the L2 Motivational Self System and the Technology Acceptance Model. Particularly noteworthy is the finding that Ought-to L2 Self positively predict Actual Usage. The study discusses pedagogical and theoretical implications, along with suggesting future research directions.</p></div>\",\"PeriodicalId\":34469,\"journal\":{\"name\":\"Computers and Education Artificial Intelligence\",\"volume\":\"7 \",\"pages\":\"Article 100302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666920X2400105X/pdfft?md5=7ea85e3b8e97e5831a851694fb6a8b69&pid=1-s2.0-S2666920X2400105X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Education Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666920X2400105X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Education Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666920X2400105X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

自 "第二语言动机自我系统"(L2MSS)问世以来,世界各地的许多研究都强调了它在阐明第二语言习得方面的有效性。然而,生成式人工智能(GenAI)技术对该模型的影响在很大程度上仍未得到探讨。技术接受模型(TAM)是研究新技术影响的一个广泛使用的框架,本研究探讨了将这两个模型结合起来考虑时的相互关系。本研究以 35 名人文科学专业的大学英语(EFL)一年级学生为对象,开展了两节由教师指导的 ChatGPT 使用写作研讨会,随后收集了调查问卷。数据分析揭示了 L2 动机自我系统与技术接受模型之间的显著相关性。尤其值得注意的是,"需要学习 "的自我对 "实际使用 "有积极的预测作用。本研究讨论了教学和理论影响,并提出了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining the relationship between the L2 motivational self system and technology acceptance model post ChatGPT introduction and utilization

Since the introduction of the L2 Motivational Self System (L2MSS), numerous studies worldwide have highlighted its effectiveness in elucidating Second Language Acquisition. However, the influence of generative artificial intelligence (GenAI) technology on this model remains largely unexplored. The Technology Acceptance Model (TAM) is a widely employed framework for examining the impact of a new technology, and this study explores the intercorrelation when these two models are considered together. Conducted with 35 s-year university English as a foreign language (EFL) students in humanities, the study involved two sessions of instructor-led ChatGPT usage writing workshops, followed by the collection of survey responses. Data analysis unveiled a notable correlation between the L2 Motivational Self System and the Technology Acceptance Model. Particularly noteworthy is the finding that Ought-to L2 Self positively predict Actual Usage. The study discusses pedagogical and theoretical implications, along with suggesting future research directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.80
自引率
0.00%
发文量
66
审稿时长
50 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信