利用混合脉冲激光烧蚀和射频磁控溅射串联系统在氧化镁上合成用于 CO 气体传感的 Sn-ZnO 纳米结构

IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Joselito P. Labis , Hamad A. Albrithen , Muhammad Ali Shar , Abdulaziz Alhazaa , Ahmed Algarni , Mohammad A. Alduraibi , Ahamad Imran , Ahmed Mohamed El-Toni
{"title":"利用混合脉冲激光烧蚀和射频磁控溅射串联系统在氧化镁上合成用于 CO 气体传感的 Sn-ZnO 纳米结构","authors":"Joselito P. Labis ,&nbsp;Hamad A. Albrithen ,&nbsp;Muhammad Ali Shar ,&nbsp;Abdulaziz Alhazaa ,&nbsp;Ahmed Algarni ,&nbsp;Mohammad A. Alduraibi ,&nbsp;Ahamad Imran ,&nbsp;Ahmed Mohamed El-Toni","doi":"10.1016/j.jscs.2024.101941","DOIUrl":null,"url":null,"abstract":"<div><p>An exceptional method of incorporating Sn ions into Zinc Oxide (ZnO) using a tandem system of Pulsed Laser Deposition (PLD) and Radio-Frequency Magnetron Sputtering (RFMS) to synthesize and functionalize ZnO nanostructures is demonstrated in this study for gas-sensing application. The RFMS power was varied up to 50 W to sputter a pure Sn metal target, while simultaneously or successively growing ZnO nanostructures on a templated MgO &lt; 0001 &gt; substrate and on an Au-plated Al<sub>2</sub>O<sub>3</sub> gas sensor, via PLD process at the substrate temperature of 700 °C in 100–500 millitorr oxygen/argon gas background. The morphologies of the grown Sn-ZnO nanostructures were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and X-ray Diffraction (XRD), and while their chemical/oxidation states and optical properties were analyzed by X-ray photospectroscopy (XPS) and photoluminescence (PL), respectively. For simultaneous deposition, the resulting (0002)-dominated 2D grain-like ZnO nanostructures were influenced by the interaction of the dynamic PLD plasma with static RFMS plasma at different powers. For successive growth, at 50 W-RF power, a remarkable increase in the sensor response to 50-ppm carbon monoxide (CO) gas was observed at 250 °C, which could be attributed to the creation of more adsorption sites in the Sn-ZnO depletion region caused by the replacement of some Zn sites with Sn ions in the ZnO matrix. This study, therefore, exhibits the viability of this hybrid system to design, synthesize, and functionalize Sn-ZnO nanomaterials, either by simultaneous/successive deposition, for gas-sensing applications.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101941"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324001364/pdfft?md5=fc3853e1510a40089b4ca396d1eceb54&pid=1-s2.0-S1319610324001364-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Sn-ZnO nanostructures on MgO<0001> by hybrid pulsed laser ablation and RF magnetron sputtering tandem system for CO gas-sensing application\",\"authors\":\"Joselito P. Labis ,&nbsp;Hamad A. Albrithen ,&nbsp;Muhammad Ali Shar ,&nbsp;Abdulaziz Alhazaa ,&nbsp;Ahmed Algarni ,&nbsp;Mohammad A. Alduraibi ,&nbsp;Ahamad Imran ,&nbsp;Ahmed Mohamed El-Toni\",\"doi\":\"10.1016/j.jscs.2024.101941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An exceptional method of incorporating Sn ions into Zinc Oxide (ZnO) using a tandem system of Pulsed Laser Deposition (PLD) and Radio-Frequency Magnetron Sputtering (RFMS) to synthesize and functionalize ZnO nanostructures is demonstrated in this study for gas-sensing application. The RFMS power was varied up to 50 W to sputter a pure Sn metal target, while simultaneously or successively growing ZnO nanostructures on a templated MgO &lt; 0001 &gt; substrate and on an Au-plated Al<sub>2</sub>O<sub>3</sub> gas sensor, via PLD process at the substrate temperature of 700 °C in 100–500 millitorr oxygen/argon gas background. The morphologies of the grown Sn-ZnO nanostructures were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and X-ray Diffraction (XRD), and while their chemical/oxidation states and optical properties were analyzed by X-ray photospectroscopy (XPS) and photoluminescence (PL), respectively. For simultaneous deposition, the resulting (0002)-dominated 2D grain-like ZnO nanostructures were influenced by the interaction of the dynamic PLD plasma with static RFMS plasma at different powers. For successive growth, at 50 W-RF power, a remarkable increase in the sensor response to 50-ppm carbon monoxide (CO) gas was observed at 250 °C, which could be attributed to the creation of more adsorption sites in the Sn-ZnO depletion region caused by the replacement of some Zn sites with Sn ions in the ZnO matrix. This study, therefore, exhibits the viability of this hybrid system to design, synthesize, and functionalize Sn-ZnO nanomaterials, either by simultaneous/successive deposition, for gas-sensing applications.</p></div>\",\"PeriodicalId\":16974,\"journal\":{\"name\":\"Journal of Saudi Chemical Society\",\"volume\":\"28 6\",\"pages\":\"Article 101941\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319610324001364/pdfft?md5=fc3853e1510a40089b4ca396d1eceb54&pid=1-s2.0-S1319610324001364-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Saudi Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319610324001364\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324001364","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用脉冲激光沉积(PLD)和射频磁控溅射(RFMS)串联系统,在氧化锌(ZnO)中加入锡离子,从而合成和功能化 ZnO 纳米结构,并将其应用于气体传感。射频磁控溅射功率最高为 50 W,用于溅射纯锡金属靶,同时通过 PLD 工艺在基底温度为 700 ℃、100-500 毫摩尔氧气/氩气背景下,在模板化氧化镁基底和镀金 Al2O3 气体传感器上同时或连续生长氧化锌纳米结构。利用扫描电子显微镜(SEM)、原子力显微镜(AFM)和 X 射线衍射(XRD)对生长出的 Sn-ZnO 纳米结构的形貌进行了表征,并分别利用 X 射线光谱(XPS)和光致发光(PL)分析了它们的化学/氧化状态和光学特性。在同步沉积过程中,动态 PLD 等离子体与静态 RFMS 等离子体在不同功率下的相互作用影响了生成的以 (0002) 为主的二维晶粒状氧化锌纳米结构。对于连续生长,在 50 W 射频功率下,在 250 ℃ 下观察到传感器对 50ppm 一氧化碳 (CO) 气体的响应显著增加,这可能是由于在 ZnO 基体中用 Sn 离子取代了一些 Zn 位点,从而在 Sn-ZnO 耗尽区产生了更多的吸附位点。因此,这项研究证明了这种混合系统在设计、合成和功能化氧化锡-氧化锌纳米材料方面的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Sn-ZnO nanostructures on MgO<0001> by hybrid pulsed laser ablation and RF magnetron sputtering tandem system for CO gas-sensing application

An exceptional method of incorporating Sn ions into Zinc Oxide (ZnO) using a tandem system of Pulsed Laser Deposition (PLD) and Radio-Frequency Magnetron Sputtering (RFMS) to synthesize and functionalize ZnO nanostructures is demonstrated in this study for gas-sensing application. The RFMS power was varied up to 50 W to sputter a pure Sn metal target, while simultaneously or successively growing ZnO nanostructures on a templated MgO < 0001 > substrate and on an Au-plated Al2O3 gas sensor, via PLD process at the substrate temperature of 700 °C in 100–500 millitorr oxygen/argon gas background. The morphologies of the grown Sn-ZnO nanostructures were characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and X-ray Diffraction (XRD), and while their chemical/oxidation states and optical properties were analyzed by X-ray photospectroscopy (XPS) and photoluminescence (PL), respectively. For simultaneous deposition, the resulting (0002)-dominated 2D grain-like ZnO nanostructures were influenced by the interaction of the dynamic PLD plasma with static RFMS plasma at different powers. For successive growth, at 50 W-RF power, a remarkable increase in the sensor response to 50-ppm carbon monoxide (CO) gas was observed at 250 °C, which could be attributed to the creation of more adsorption sites in the Sn-ZnO depletion region caused by the replacement of some Zn sites with Sn ions in the ZnO matrix. This study, therefore, exhibits the viability of this hybrid system to design, synthesize, and functionalize Sn-ZnO nanomaterials, either by simultaneous/successive deposition, for gas-sensing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Saudi Chemical Society
Journal of Saudi Chemical Society CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
8.90
自引率
1.80%
发文量
120
审稿时长
38 days
期刊介绍: Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to: •Inorganic chemistry •Physical chemistry •Organic chemistry •Analytical chemistry Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信