{"title":"基于电化学和机器学习的四种食用油不同储藏期酸败综合研究","authors":"Song Wan , Lin Tang","doi":"10.1016/j.ijoes.2024.100799","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the rancidity development in four edible oils (corn, mustard, soybean, and sunflower) over a 12-month storage period using a novel approach combining electrochemical techniques and machine learning. Cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry were employed to characterize oil oxidation. Electrochemical parameters showed strong correlations with traditional chemical indicators, such as the DPV peak current at +0.2 V with p-anisidine value (r = 0.94, p < 0.001). A Random Forest model, trained on electrochemical data, accurately predicted Total Oxidation (TOTOX) values, achieving an R² of 0.96 and RMSE of 2.18 for the test set. The model effectively captured oxidation trends across oil types, with the highest accuracy for mustard oil (MAE: 1.21) and lower performance for sunflower oil (MAE: 2.15). Feature importance analysis revealed charge transfer resistance and DPV peak currents as the most influential predictors. This approach offers rapid, non-destructive assessment of oil quality, potentially improving quality control in the food industry. However, challenges such as electrode fouling and complex sample preparation need to be addressed for practical implementation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1452398124003419/pdfft?md5=0f08bb25c65699c6f2ee0d6a7c61e071&pid=1-s2.0-S1452398124003419-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comprehensive electrochemical and machine learning-based study of rancidity in four edible oils over various storage periods\",\"authors\":\"Song Wan , Lin Tang\",\"doi\":\"10.1016/j.ijoes.2024.100799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the rancidity development in four edible oils (corn, mustard, soybean, and sunflower) over a 12-month storage period using a novel approach combining electrochemical techniques and machine learning. Cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry were employed to characterize oil oxidation. Electrochemical parameters showed strong correlations with traditional chemical indicators, such as the DPV peak current at +0.2 V with p-anisidine value (r = 0.94, p < 0.001). A Random Forest model, trained on electrochemical data, accurately predicted Total Oxidation (TOTOX) values, achieving an R² of 0.96 and RMSE of 2.18 for the test set. The model effectively captured oxidation trends across oil types, with the highest accuracy for mustard oil (MAE: 1.21) and lower performance for sunflower oil (MAE: 2.15). Feature importance analysis revealed charge transfer resistance and DPV peak currents as the most influential predictors. This approach offers rapid, non-destructive assessment of oil quality, potentially improving quality control in the food industry. However, challenges such as electrode fouling and complex sample preparation need to be addressed for practical implementation.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1452398124003419/pdfft?md5=0f08bb25c65699c6f2ee0d6a7c61e071&pid=1-s2.0-S1452398124003419-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398124003419\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124003419","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Comprehensive electrochemical and machine learning-based study of rancidity in four edible oils over various storage periods
This study investigates the rancidity development in four edible oils (corn, mustard, soybean, and sunflower) over a 12-month storage period using a novel approach combining electrochemical techniques and machine learning. Cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry were employed to characterize oil oxidation. Electrochemical parameters showed strong correlations with traditional chemical indicators, such as the DPV peak current at +0.2 V with p-anisidine value (r = 0.94, p < 0.001). A Random Forest model, trained on electrochemical data, accurately predicted Total Oxidation (TOTOX) values, achieving an R² of 0.96 and RMSE of 2.18 for the test set. The model effectively captured oxidation trends across oil types, with the highest accuracy for mustard oil (MAE: 1.21) and lower performance for sunflower oil (MAE: 2.15). Feature importance analysis revealed charge transfer resistance and DPV peak currents as the most influential predictors. This approach offers rapid, non-destructive assessment of oil quality, potentially improving quality control in the food industry. However, challenges such as electrode fouling and complex sample preparation need to be addressed for practical implementation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.