{"title":"沥青混凝土的三维中尺度建模","authors":"","doi":"10.1016/j.compstruc.2024.107535","DOIUrl":null,"url":null,"abstract":"<div><p>An efficient method to address the three-dimensional modeling of the visco-elasto-plastic material behavior, specifically of bituminous conglomerates used in asphalt concrete production, is proposed. The method resorts to one of the most recent formulations for asphalt creep modeling, represented by the modified Huet-Sayegh fractional rheological model. The Grünwald-Letnikov representation of the fractional operator is adopted to treat the operator numerically in an efficient manner. Further, a coupling scheme between the creep model and elasto-plasticity is proposed by adopting the additive decomposition of the total strain tensor. This enables the numerical assessment of the mechanical behavior for bituminous materials under short- to long-term loading. In this context, both constant strain rate tests, and creep recovery tests are numerically simulated.</p><p>Numerical analyses are conducted at the meso-scale with the aim to evaluate the development of inelastic strains in the binder during creep, due to the local interaction between the different material components.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045794924002645/pdfft?md5=8e71369e88ebf5de1ea95712443db967&pid=1-s2.0-S0045794924002645-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional meso-scale modeling of asphalt concrete\",\"authors\":\"\",\"doi\":\"10.1016/j.compstruc.2024.107535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An efficient method to address the three-dimensional modeling of the visco-elasto-plastic material behavior, specifically of bituminous conglomerates used in asphalt concrete production, is proposed. The method resorts to one of the most recent formulations for asphalt creep modeling, represented by the modified Huet-Sayegh fractional rheological model. The Grünwald-Letnikov representation of the fractional operator is adopted to treat the operator numerically in an efficient manner. Further, a coupling scheme between the creep model and elasto-plasticity is proposed by adopting the additive decomposition of the total strain tensor. This enables the numerical assessment of the mechanical behavior for bituminous materials under short- to long-term loading. In this context, both constant strain rate tests, and creep recovery tests are numerically simulated.</p><p>Numerical analyses are conducted at the meso-scale with the aim to evaluate the development of inelastic strains in the binder during creep, due to the local interaction between the different material components.</p></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0045794924002645/pdfft?md5=8e71369e88ebf5de1ea95712443db967&pid=1-s2.0-S0045794924002645-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794924002645\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924002645","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Three-dimensional meso-scale modeling of asphalt concrete
An efficient method to address the three-dimensional modeling of the visco-elasto-plastic material behavior, specifically of bituminous conglomerates used in asphalt concrete production, is proposed. The method resorts to one of the most recent formulations for asphalt creep modeling, represented by the modified Huet-Sayegh fractional rheological model. The Grünwald-Letnikov representation of the fractional operator is adopted to treat the operator numerically in an efficient manner. Further, a coupling scheme between the creep model and elasto-plasticity is proposed by adopting the additive decomposition of the total strain tensor. This enables the numerical assessment of the mechanical behavior for bituminous materials under short- to long-term loading. In this context, both constant strain rate tests, and creep recovery tests are numerically simulated.
Numerical analyses are conducted at the meso-scale with the aim to evaluate the development of inelastic strains in the binder during creep, due to the local interaction between the different material components.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.