LabellessFace:无属性标签人脸识别的公平度量学习

Tetsushi Ohki, Yuya Sato, Masakatsu Nishigaki, Koichi Ito
{"title":"LabellessFace:无属性标签人脸识别的公平度量学习","authors":"Tetsushi Ohki, Yuya Sato, Masakatsu Nishigaki, Koichi Ito","doi":"arxiv-2409.09274","DOIUrl":null,"url":null,"abstract":"Demographic bias is one of the major challenges for face recognition systems.\nThe majority of existing studies on demographic biases are heavily dependent on\nspecific demographic groups or demographic classifier, making it difficult to\naddress performance for unrecognised groups. This paper introduces\n``LabellessFace'', a novel framework that improves demographic bias in face\nrecognition without requiring demographic group labeling typically required for\nfairness considerations. We propose a novel fairness enhancement metric called\nthe class favoritism level, which assesses the extent of favoritism towards\nspecific classes across the dataset. Leveraging this metric, we introduce the\nfair class margin penalty, an extension of existing margin-based metric\nlearning. This method dynamically adjusts learning parameters based on class\nfavoritism levels, promoting fairness across all attributes. By treating each\nclass as an individual in facial recognition systems, we facilitate learning\nthat minimizes biases in authentication accuracy among individuals.\nComprehensive experiments have demonstrated that our proposed method is\neffective for enhancing fairness while maintaining authentication accuracy.","PeriodicalId":501112,"journal":{"name":"arXiv - CS - Computers and Society","volume":"213 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LabellessFace: Fair Metric Learning for Face Recognition without Attribute Labels\",\"authors\":\"Tetsushi Ohki, Yuya Sato, Masakatsu Nishigaki, Koichi Ito\",\"doi\":\"arxiv-2409.09274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demographic bias is one of the major challenges for face recognition systems.\\nThe majority of existing studies on demographic biases are heavily dependent on\\nspecific demographic groups or demographic classifier, making it difficult to\\naddress performance for unrecognised groups. This paper introduces\\n``LabellessFace'', a novel framework that improves demographic bias in face\\nrecognition without requiring demographic group labeling typically required for\\nfairness considerations. We propose a novel fairness enhancement metric called\\nthe class favoritism level, which assesses the extent of favoritism towards\\nspecific classes across the dataset. Leveraging this metric, we introduce the\\nfair class margin penalty, an extension of existing margin-based metric\\nlearning. This method dynamically adjusts learning parameters based on class\\nfavoritism levels, promoting fairness across all attributes. By treating each\\nclass as an individual in facial recognition systems, we facilitate learning\\nthat minimizes biases in authentication accuracy among individuals.\\nComprehensive experiments have demonstrated that our proposed method is\\neffective for enhancing fairness while maintaining authentication accuracy.\",\"PeriodicalId\":501112,\"journal\":{\"name\":\"arXiv - CS - Computers and Society\",\"volume\":\"213 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computers and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computers and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人口统计偏差是人脸识别系统面临的主要挑战之一。现有的大多数关于人口统计偏差的研究都严重依赖于特定的人口统计群体或人口统计分类器,因此很难解决未识别群体的性能问题。本文介绍了 "无标签人脸"(LabellessFace),这是一个新颖的框架,可以改善人脸识别中的人口统计偏差,而无需通常出于公平性考虑而需要的人口统计群体标签。我们提出了一种新颖的公平性增强指标--"类别偏爱程度",它可以评估整个数据集中对特定类别的偏爱程度。利用这一指标,我们引入了公平类别边际惩罚,这是对现有基于边际指标学习的扩展。这种方法可以根据类别偏好程度动态调整学习参数,促进所有属性的公平性。通过将每个类别视为面部识别系统中的一个个体,我们促进了学习,最大限度地减少了个体间认证准确性的偏差。综合实验证明,我们提出的方法在保持认证准确性的同时,还能有效提高公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LabellessFace: Fair Metric Learning for Face Recognition without Attribute Labels
Demographic bias is one of the major challenges for face recognition systems. The majority of existing studies on demographic biases are heavily dependent on specific demographic groups or demographic classifier, making it difficult to address performance for unrecognised groups. This paper introduces ``LabellessFace'', a novel framework that improves demographic bias in face recognition without requiring demographic group labeling typically required for fairness considerations. We propose a novel fairness enhancement metric called the class favoritism level, which assesses the extent of favoritism towards specific classes across the dataset. Leveraging this metric, we introduce the fair class margin penalty, an extension of existing margin-based metric learning. This method dynamically adjusts learning parameters based on class favoritism levels, promoting fairness across all attributes. By treating each class as an individual in facial recognition systems, we facilitate learning that minimizes biases in authentication accuracy among individuals. Comprehensive experiments have demonstrated that our proposed method is effective for enhancing fairness while maintaining authentication accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信