用于风险感知路径规划的学习加速 A* 搜索

Jun Xiang, Junfei Xie, Jun Chen
{"title":"用于风险感知路径规划的学习加速 A* 搜索","authors":"Jun Xiang, Junfei Xie, Jun Chen","doi":"arxiv-2409.11634","DOIUrl":null,"url":null,"abstract":"Safety is a critical concern for urban flights of autonomous Unmanned Aerial\nVehicles. In populated environments, risk should be accounted for to produce an\neffective and safe path, known as risk-aware path planning. Risk-aware path\nplanning can be modeled as a Constrained Shortest Path (CSP) problem, aiming to\nidentify the shortest possible route that adheres to specified safety\nthresholds. CSP is NP-hard and poses significant computational challenges.\nAlthough many traditional methods can solve it accurately, all of them are very\nslow. Our method introduces an additional safety dimension to the traditional\nA* (called ASD A*), enabling A* to handle CSP. Furthermore, we develop a custom\nlearning-based heuristic using transformer-based neural networks, which\nsignificantly reduces the computational load and improves the performance of\nthe ASD A* algorithm. The proposed method is well-validated with both random\nand realistic simulation scenarios.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-accelerated A* Search for Risk-aware Path Planning\",\"authors\":\"Jun Xiang, Junfei Xie, Jun Chen\",\"doi\":\"arxiv-2409.11634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safety is a critical concern for urban flights of autonomous Unmanned Aerial\\nVehicles. In populated environments, risk should be accounted for to produce an\\neffective and safe path, known as risk-aware path planning. Risk-aware path\\nplanning can be modeled as a Constrained Shortest Path (CSP) problem, aiming to\\nidentify the shortest possible route that adheres to specified safety\\nthresholds. CSP is NP-hard and poses significant computational challenges.\\nAlthough many traditional methods can solve it accurately, all of them are very\\nslow. Our method introduces an additional safety dimension to the traditional\\nA* (called ASD A*), enabling A* to handle CSP. Furthermore, we develop a custom\\nlearning-based heuristic using transformer-based neural networks, which\\nsignificantly reduces the computational load and improves the performance of\\nthe ASD A* algorithm. The proposed method is well-validated with both random\\nand realistic simulation scenarios.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

安全是自主无人飞行器在城市中飞行的关键问题。在人口稠密的环境中,应考虑到风险,以制定有效而安全的路径,这就是所谓的风险感知路径规划。风险感知路径规划可模拟为受限最短路径(CSP)问题,旨在确定符合指定安全阈值的最短路径。虽然许多传统方法都能准确求解该问题,但速度都很慢。我们的方法为传统的 A*(称为 ASD A*)引入了一个额外的安全维度,使 A* 能够处理 CSP。此外,我们还利用基于变压器的神经网络开发了一种基于自定义学习的启发式,大大降低了计算负荷,提高了 ASD A* 算法的性能。所提出的方法在随机和现实模拟场景中都得到了很好的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-accelerated A* Search for Risk-aware Path Planning
Safety is a critical concern for urban flights of autonomous Unmanned Aerial Vehicles. In populated environments, risk should be accounted for to produce an effective and safe path, known as risk-aware path planning. Risk-aware path planning can be modeled as a Constrained Shortest Path (CSP) problem, aiming to identify the shortest possible route that adheres to specified safety thresholds. CSP is NP-hard and poses significant computational challenges. Although many traditional methods can solve it accurately, all of them are very slow. Our method introduces an additional safety dimension to the traditional A* (called ASD A*), enabling A* to handle CSP. Furthermore, we develop a custom learning-based heuristic using transformer-based neural networks, which significantly reduces the computational load and improves the performance of the ASD A* algorithm. The proposed method is well-validated with both random and realistic simulation scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信