用于安全敏捷导航的反应式防撞系统

Alessandro Saviolo, Niko Picello, Rishabh Verma, Giuseppe Loianno
{"title":"用于安全敏捷导航的反应式防撞系统","authors":"Alessandro Saviolo, Niko Picello, Rishabh Verma, Giuseppe Loianno","doi":"arxiv-2409.11962","DOIUrl":null,"url":null,"abstract":"Reactive collision avoidance is essential for agile robots navigating complex\nand dynamic environments, enabling real-time obstacle response. However, this\ntask is inherently challenging because it requires a tight integration of\nperception, planning, and control, which traditional methods often handle\nseparately, resulting in compounded errors and delays. This paper introduces a\nnovel approach that unifies these tasks into a single reactive framework using\nsolely onboard sensing and computing. Our method combines nonlinear model\npredictive control with adaptive control barrier functions, directly linking\nperception-driven constraints to real-time planning and control. Constraints\nare determined by using a neural network to refine noisy RGB-D data, enhancing\ndepth accuracy, and selecting points with the minimum time-to-collision to\nprioritize the most immediate threats. To maintain a balance between safety and\nagility, a heuristic dynamically adjusts the optimization process, preventing\noverconstraints in real time. Extensive experiments with an agile quadrotor\ndemonstrate effective collision avoidance across diverse indoor and outdoor\nenvironments, without requiring environment-specific tuning or explicit\nmapping.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive Collision Avoidance for Safe Agile Navigation\",\"authors\":\"Alessandro Saviolo, Niko Picello, Rishabh Verma, Giuseppe Loianno\",\"doi\":\"arxiv-2409.11962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactive collision avoidance is essential for agile robots navigating complex\\nand dynamic environments, enabling real-time obstacle response. However, this\\ntask is inherently challenging because it requires a tight integration of\\nperception, planning, and control, which traditional methods often handle\\nseparately, resulting in compounded errors and delays. This paper introduces a\\nnovel approach that unifies these tasks into a single reactive framework using\\nsolely onboard sensing and computing. Our method combines nonlinear model\\npredictive control with adaptive control barrier functions, directly linking\\nperception-driven constraints to real-time planning and control. Constraints\\nare determined by using a neural network to refine noisy RGB-D data, enhancing\\ndepth accuracy, and selecting points with the minimum time-to-collision to\\nprioritize the most immediate threats. To maintain a balance between safety and\\nagility, a heuristic dynamically adjusts the optimization process, preventing\\noverconstraints in real time. Extensive experiments with an agile quadrotor\\ndemonstrate effective collision avoidance across diverse indoor and outdoor\\nenvironments, without requiring environment-specific tuning or explicit\\nmapping.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于在复杂动态环境中航行的敏捷机器人来说,反应式防撞是实现实时障碍物响应的关键。然而,这项任务本身就极具挑战性,因为它需要将感知、规划和控制紧密结合在一起,而传统方法往往将这些任务分开处理,从而导致错误和延迟的加剧。本文介绍了一种新方法,它将这些任务统一到一个反应式框架中,只使用机载传感和计算。我们的方法将非线性模型预测控制与自适应控制障碍函数相结合,直接将感知驱动的约束条件与实时规划和控制联系起来。通过使用神经网络完善嘈杂的 RGB-D 数据来确定约束条件,提高深度精度,并选择碰撞时间最短的点,优先处理最紧迫的威胁。为了在安全性和敏捷性之间保持平衡,一种启发式方法会动态调整优化过程,实时防止过度约束。使用敏捷四旋翼飞行器进行的大量实验证明,在各种室内和室外环境中都能有效避免碰撞,而不需要针对特定环境进行调整或显式映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reactive Collision Avoidance for Safe Agile Navigation
Reactive collision avoidance is essential for agile robots navigating complex and dynamic environments, enabling real-time obstacle response. However, this task is inherently challenging because it requires a tight integration of perception, planning, and control, which traditional methods often handle separately, resulting in compounded errors and delays. This paper introduces a novel approach that unifies these tasks into a single reactive framework using solely onboard sensing and computing. Our method combines nonlinear model predictive control with adaptive control barrier functions, directly linking perception-driven constraints to real-time planning and control. Constraints are determined by using a neural network to refine noisy RGB-D data, enhancing depth accuracy, and selecting points with the minimum time-to-collision to prioritize the most immediate threats. To maintain a balance between safety and agility, a heuristic dynamically adjusts the optimization process, preventing overconstraints in real time. Extensive experiments with an agile quadrotor demonstrate effective collision avoidance across diverse indoor and outdoor environments, without requiring environment-specific tuning or explicit mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信