乳腺癌细胞衍生的外泌体以 AKT-mTOR 依赖性方式减少活化的 CD8 + T 细胞的糖酵解作用

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Abhishek Choudhury, Soumya Chatterjee, Shauryabrota Dalui, Pronabesh Ghosh, Altamas Hossain Daptary, Golam Kibria Mollah, Arindam Bhattacharyya
{"title":"乳腺癌细胞衍生的外泌体以 AKT-mTOR 依赖性方式减少活化的 CD8 + T 细胞的糖酵解作用","authors":"Abhishek Choudhury, Soumya Chatterjee, Shauryabrota Dalui, Pronabesh Ghosh, Altamas Hossain Daptary, Golam Kibria Mollah, Arindam Bhattacharyya","doi":"10.1002/cbin.12241","DOIUrl":null,"url":null,"abstract":"Cytotoxic CD8<sup>+</sup> T cells plays a pivotal role in the adaptive immune system to protect the organism against infections and cancer. During activation and response, T cells undergo a metabolic reprogramming that involves various metabolic pathways, with a predominant reliance on glycolysis to meet their increased energy demands and enhanced effector response. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Recent reports indicates that exosomes may transfer biologically functional molecules to the recipient cells, thereby facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells. This study sought to enlighten possible involvement of cancer-derived exosomes in CD8 + T cell glucose metabolism and discover a regulated signalome as a mechanism of action. We observed reduction in glucose metabolism due to downregulation of AKT/mTOR signalome in activated CD8 + T cells after cancer derived exosome exposure. In-vivo murine breast tumor studies showed better tumor control and antitumor CD8 + T cell glycolysis and effector response after abrogation of exosome release from breast cancer cells. Summarizing, the present study establishes an immune evasion mechanism of breast cancer cell secreted exosomes that will act as a foundation for future precision cancer therapeutics.","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breast cancer cell derived exosomes reduces glycolysis of activated CD8 + T cells in a AKT-mTOR dependent manner\",\"authors\":\"Abhishek Choudhury, Soumya Chatterjee, Shauryabrota Dalui, Pronabesh Ghosh, Altamas Hossain Daptary, Golam Kibria Mollah, Arindam Bhattacharyya\",\"doi\":\"10.1002/cbin.12241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cytotoxic CD8<sup>+</sup> T cells plays a pivotal role in the adaptive immune system to protect the organism against infections and cancer. During activation and response, T cells undergo a metabolic reprogramming that involves various metabolic pathways, with a predominant reliance on glycolysis to meet their increased energy demands and enhanced effector response. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Recent reports indicates that exosomes may transfer biologically functional molecules to the recipient cells, thereby facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells. This study sought to enlighten possible involvement of cancer-derived exosomes in CD8 + T cell glucose metabolism and discover a regulated signalome as a mechanism of action. We observed reduction in glucose metabolism due to downregulation of AKT/mTOR signalome in activated CD8 + T cells after cancer derived exosome exposure. In-vivo murine breast tumor studies showed better tumor control and antitumor CD8 + T cell glycolysis and effector response after abrogation of exosome release from breast cancer cells. Summarizing, the present study establishes an immune evasion mechanism of breast cancer cell secreted exosomes that will act as a foundation for future precision cancer therapeutics.\",\"PeriodicalId\":9806,\"journal\":{\"name\":\"Cell Biology International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbin.12241\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.12241","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞毒性 CD8+ T 细胞在适应性免疫系统中发挥着保护机体免受感染和癌症侵害的关键作用。在激活和反应过程中,T 细胞会进行新陈代谢重编程,其中涉及各种新陈代谢途径,主要依赖糖酵解来满足其增加的能量需求和增强效应反应。最近,被称为外泌体的细胞外囊泡(EV)被认为是调节肿瘤微环境(TME)的重要信号介质。最近的报道表明,外泌体可将生物功能分子转移到受体细胞,从而通过重编程癌细胞的新陈代谢促进癌症进展、血管生成、转移、耐药性和免疫抑制。本研究试图揭示癌症衍生外泌体可能参与 CD8 + T 细胞葡萄糖代谢的情况,并发现作为作用机制的调控信号组。我们观察到,暴露于癌症衍生外泌体后,活化的CD8 + T细胞中AKT/mTOR信号组下调,导致葡萄糖代谢降低。体内小鼠乳腺肿瘤研究表明,乳腺癌细胞释放的外泌体被削弱后,肿瘤控制和抗肿瘤 CD8 + T 细胞糖酵解及效应反应均有所改善。综上所述,本研究建立了乳腺癌细胞分泌外泌体的免疫逃避机制,这将为未来的癌症精准治疗奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breast cancer cell derived exosomes reduces glycolysis of activated CD8 + T cells in a AKT-mTOR dependent manner
Cytotoxic CD8+ T cells plays a pivotal role in the adaptive immune system to protect the organism against infections and cancer. During activation and response, T cells undergo a metabolic reprogramming that involves various metabolic pathways, with a predominant reliance on glycolysis to meet their increased energy demands and enhanced effector response. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Recent reports indicates that exosomes may transfer biologically functional molecules to the recipient cells, thereby facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells. This study sought to enlighten possible involvement of cancer-derived exosomes in CD8 + T cell glucose metabolism and discover a regulated signalome as a mechanism of action. We observed reduction in glucose metabolism due to downregulation of AKT/mTOR signalome in activated CD8 + T cells after cancer derived exosome exposure. In-vivo murine breast tumor studies showed better tumor control and antitumor CD8 + T cell glycolysis and effector response after abrogation of exosome release from breast cancer cells. Summarizing, the present study establishes an immune evasion mechanism of breast cancer cell secreted exosomes that will act as a foundation for future precision cancer therapeutics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biology International
Cell Biology International 生物-细胞生物学
CiteScore
7.60
自引率
0.00%
发文量
208
审稿时长
1 months
期刊介绍: Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect. These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信