J. M. Edjokola, M. Heidinger, A. M. Niroumand, V. Hacker and M. Bodner
{"title":"PEFC 气体扩散层中的化学氧化诱导降解:机理和性能影响","authors":"J. M. Edjokola, M. Heidinger, A. M. Niroumand, V. Hacker and M. Bodner","doi":"10.1149/1945-7111/ad790a","DOIUrl":null,"url":null,"abstract":"Gas Diffusion Layers (GDLs) are integral in polymer electrolyte fuel cells, facilitating gas and water transport while providing structural support. However, their susceptibility to chemical degradation significantly impacts their functionality over extensive periods of time. This study investigates the mechanisms of GDL degradation, focusing on chemical oxidation. Accelerated stress testing, which involves immersing GDL in Fenton’s reagent for 24 h, is used. Ex-situ analysis reveals changes in surface properties, including a 3% reduction in contact angle, from 15% to only 9% remaining fluorine on the surface, and OH group presence in GDLs exposed to Fenton’s reagent. In-situ methods are used to study the impact of GDL degradation on fuel cell performance. Polarization curve reveals a 17% performance enhancement in aged GDLs, with a corresponding 19% decrease in voltage loss due to oxygen transport resistance at a high current observed via transient limiting current analysis. Electrochemical impedance spectroscopy reveals a 51% reduction in mass transport resistance, providing insights into structural alterations, such as pore widening and increased hydrophilicity. Despite these improvements, aged GDL demonstrates substantial degradation under high humidity, leading to water management challenges and voltage instability. This is attributed to the loss of fluorine, as indicated by the ex situ analysis.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Oxidation-Induced Degradation in Gas Diffusion Layers for PEFC: Mechanisms and Performance Implications\",\"authors\":\"J. M. Edjokola, M. Heidinger, A. M. Niroumand, V. Hacker and M. Bodner\",\"doi\":\"10.1149/1945-7111/ad790a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas Diffusion Layers (GDLs) are integral in polymer electrolyte fuel cells, facilitating gas and water transport while providing structural support. However, their susceptibility to chemical degradation significantly impacts their functionality over extensive periods of time. This study investigates the mechanisms of GDL degradation, focusing on chemical oxidation. Accelerated stress testing, which involves immersing GDL in Fenton’s reagent for 24 h, is used. Ex-situ analysis reveals changes in surface properties, including a 3% reduction in contact angle, from 15% to only 9% remaining fluorine on the surface, and OH group presence in GDLs exposed to Fenton’s reagent. In-situ methods are used to study the impact of GDL degradation on fuel cell performance. Polarization curve reveals a 17% performance enhancement in aged GDLs, with a corresponding 19% decrease in voltage loss due to oxygen transport resistance at a high current observed via transient limiting current analysis. Electrochemical impedance spectroscopy reveals a 51% reduction in mass transport resistance, providing insights into structural alterations, such as pore widening and increased hydrophilicity. Despite these improvements, aged GDL demonstrates substantial degradation under high humidity, leading to water management challenges and voltage instability. This is attributed to the loss of fluorine, as indicated by the ex situ analysis.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad790a\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad790a","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Chemical Oxidation-Induced Degradation in Gas Diffusion Layers for PEFC: Mechanisms and Performance Implications
Gas Diffusion Layers (GDLs) are integral in polymer electrolyte fuel cells, facilitating gas and water transport while providing structural support. However, their susceptibility to chemical degradation significantly impacts their functionality over extensive periods of time. This study investigates the mechanisms of GDL degradation, focusing on chemical oxidation. Accelerated stress testing, which involves immersing GDL in Fenton’s reagent for 24 h, is used. Ex-situ analysis reveals changes in surface properties, including a 3% reduction in contact angle, from 15% to only 9% remaining fluorine on the surface, and OH group presence in GDLs exposed to Fenton’s reagent. In-situ methods are used to study the impact of GDL degradation on fuel cell performance. Polarization curve reveals a 17% performance enhancement in aged GDLs, with a corresponding 19% decrease in voltage loss due to oxygen transport resistance at a high current observed via transient limiting current analysis. Electrochemical impedance spectroscopy reveals a 51% reduction in mass transport resistance, providing insights into structural alterations, such as pore widening and increased hydrophilicity. Despite these improvements, aged GDL demonstrates substantial degradation under high humidity, leading to water management challenges and voltage instability. This is attributed to the loss of fluorine, as indicated by the ex situ analysis.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.