Muhammad Nur Faez Mohd Sahaid, Lim Jia Xin, Noor Najmi Bonnia, Sharifah Nabihah Syed Jaafar
{"title":"回收的炭黑填料改善了壳聚糖三维复合材料的性能","authors":"Muhammad Nur Faez Mohd Sahaid, Lim Jia Xin, Noor Najmi Bonnia, Sharifah Nabihah Syed Jaafar","doi":"10.1134/S0965545X24600777","DOIUrl":null,"url":null,"abstract":"<p>The rapid growth in the use of carbon-based composites has resulted in the need to replace commercially available carbon materials with those from renewable and sustainable sources. In this work, recovered carbon black (rCB) from the waste tire was used for the preparation of 3-dimensional (3D) chitosan/carbon composites. The rCB was treated with acid (T-rCB) to modify its functionality. By varying the percentage of T-rCB, the 3D-treated chitosan/carbon composites (C/T-rCB) were prepared via a free-drying method. The rCB sample is shown to be agglomerated and undispersed while the T-rCB could disperse homogeneously and is stable in water. The Raman bands at T-rCB had weaker intensities and thus the <i>I</i><sub>D</sub>/<i>I</i><sub>G</sub> area was less than rCB. The incorporation of T-rCB in chitosan composite shows a good interaction through the ‒CONH– bond. The increment of T-rCB in the composite was able to increase the water uptake and water retention abilities. The addition of T-rCB has resulted in improved tensile strength, especially to the 0.03 C/T-rCB. It was found the 3D composite samples were fibrous and porous.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"66 2","pages":"233 - 239"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovered Carbon Black Filler Improves the Properties of Chitosan 3-Dimensional Composites\",\"authors\":\"Muhammad Nur Faez Mohd Sahaid, Lim Jia Xin, Noor Najmi Bonnia, Sharifah Nabihah Syed Jaafar\",\"doi\":\"10.1134/S0965545X24600777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid growth in the use of carbon-based composites has resulted in the need to replace commercially available carbon materials with those from renewable and sustainable sources. In this work, recovered carbon black (rCB) from the waste tire was used for the preparation of 3-dimensional (3D) chitosan/carbon composites. The rCB was treated with acid (T-rCB) to modify its functionality. By varying the percentage of T-rCB, the 3D-treated chitosan/carbon composites (C/T-rCB) were prepared via a free-drying method. The rCB sample is shown to be agglomerated and undispersed while the T-rCB could disperse homogeneously and is stable in water. The Raman bands at T-rCB had weaker intensities and thus the <i>I</i><sub>D</sub>/<i>I</i><sub>G</sub> area was less than rCB. The incorporation of T-rCB in chitosan composite shows a good interaction through the ‒CONH– bond. The increment of T-rCB in the composite was able to increase the water uptake and water retention abilities. The addition of T-rCB has resulted in improved tensile strength, especially to the 0.03 C/T-rCB. It was found the 3D composite samples were fibrous and porous.</p>\",\"PeriodicalId\":738,\"journal\":{\"name\":\"Polymer Science, Series A\",\"volume\":\"66 2\",\"pages\":\"233 - 239\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965545X24600777\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X24600777","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Recovered Carbon Black Filler Improves the Properties of Chitosan 3-Dimensional Composites
The rapid growth in the use of carbon-based composites has resulted in the need to replace commercially available carbon materials with those from renewable and sustainable sources. In this work, recovered carbon black (rCB) from the waste tire was used for the preparation of 3-dimensional (3D) chitosan/carbon composites. The rCB was treated with acid (T-rCB) to modify its functionality. By varying the percentage of T-rCB, the 3D-treated chitosan/carbon composites (C/T-rCB) were prepared via a free-drying method. The rCB sample is shown to be agglomerated and undispersed while the T-rCB could disperse homogeneously and is stable in water. The Raman bands at T-rCB had weaker intensities and thus the ID/IG area was less than rCB. The incorporation of T-rCB in chitosan composite shows a good interaction through the ‒CONH– bond. The increment of T-rCB in the composite was able to increase the water uptake and water retention abilities. The addition of T-rCB has resulted in improved tensile strength, especially to the 0.03 C/T-rCB. It was found the 3D composite samples were fibrous and porous.
期刊介绍:
Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.