AdS2 中无质量标量散射的平坦极限

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Sarthak Duary
{"title":"AdS2 中无质量标量散射的平坦极限","authors":"Sarthak Duary","doi":"10.1016/j.nuclphysb.2024.116687","DOIUrl":null,"url":null,"abstract":"<div><p>We explore the flat limit of massless scalar scattering in <span><math><msub><mrow><mi>AdS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We derive the <span><math><mn>1</mn><mo>→</mo><mn>1</mn></math></span> <span><math><mi>S</mi></math></span>-matrix from the CFT 2-point function. We show a key property of the <span><math><mn>2</mn><mo>→</mo><mn>2</mn></math></span> <span><math><mi>S</mi></math></span>-matrix in 2<em>d</em>, where the contact interaction in the flat limit gives momentum conserving delta function. We show the factorization of the <span><math><mi>n</mi><mo>→</mo><mi>n</mi></math></span> <span><math><mi>S</mi></math></span>-matrix for integrable models in the flat limit, focusing on contact interactions. We calculate the <span><math><mi>S</mi></math></span>-matrix by linking the CFT operator on the AdS boundary to the scattering state in flat-space. We use bulk operator reconstruction to study massless scalar scattering in the flat limit and solve the Klein-Gordon equation in global <span><math><msub><mrow><mi>AdS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> for the massless scalar field. The solution is simple, involving a pure phase in global time and a sinusoidal function in the radial coordinate. This simplicity also extends to the smearing function, allowing us to map the scattering state to the CFT operator while taking AdS corrections into account.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1007 ","pages":"Article 116687"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002530/pdfft?md5=06b9b2ed4f62c81782c84ef23949f708&pid=1-s2.0-S0550321324002530-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Flat limit of massless scalar scattering in AdS2\",\"authors\":\"Sarthak Duary\",\"doi\":\"10.1016/j.nuclphysb.2024.116687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We explore the flat limit of massless scalar scattering in <span><math><msub><mrow><mi>AdS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We derive the <span><math><mn>1</mn><mo>→</mo><mn>1</mn></math></span> <span><math><mi>S</mi></math></span>-matrix from the CFT 2-point function. We show a key property of the <span><math><mn>2</mn><mo>→</mo><mn>2</mn></math></span> <span><math><mi>S</mi></math></span>-matrix in 2<em>d</em>, where the contact interaction in the flat limit gives momentum conserving delta function. We show the factorization of the <span><math><mi>n</mi><mo>→</mo><mi>n</mi></math></span> <span><math><mi>S</mi></math></span>-matrix for integrable models in the flat limit, focusing on contact interactions. We calculate the <span><math><mi>S</mi></math></span>-matrix by linking the CFT operator on the AdS boundary to the scattering state in flat-space. We use bulk operator reconstruction to study massless scalar scattering in the flat limit and solve the Klein-Gordon equation in global <span><math><msub><mrow><mi>AdS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> for the massless scalar field. The solution is simple, involving a pure phase in global time and a sinusoidal function in the radial coordinate. This simplicity also extends to the smearing function, allowing us to map the scattering state to the CFT operator while taking AdS corrections into account.</p></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1007 \",\"pages\":\"Article 116687\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002530/pdfft?md5=06b9b2ed4f62c81782c84ef23949f708&pid=1-s2.0-S0550321324002530-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002530\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002530","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了 AdS2 中无质量标量散射的平坦极限。我们从 CFT 2 点函数推导出 1→1S 矩阵。我们展示了 2d 中 2→2S 矩阵的一个关键性质,即平面极限中的接触相互作用给出了动量守恒三角函数。我们展示了平面极限中可积分模型的 n→nS 矩阵的因式分解,重点是接触相互作用。我们通过把 AdS 边界上的 CFT 算子与平空间的散射态联系起来来计算 S 矩阵。我们利用体算子重构来研究平坦极限中的无质量标量散射,并求解全局 AdS2 中无质量标量场的克莱因-戈登方程。解法很简单,涉及全局时间中的纯相位和径向坐标中的正弦函数。这种简单性还延伸到了抹平函数,使我们能够将散射态映射到 CFT 算子,同时将 AdS 修正考虑在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flat limit of massless scalar scattering in AdS2

We explore the flat limit of massless scalar scattering in AdS2. We derive the 11 S-matrix from the CFT 2-point function. We show a key property of the 22 S-matrix in 2d, where the contact interaction in the flat limit gives momentum conserving delta function. We show the factorization of the nn S-matrix for integrable models in the flat limit, focusing on contact interactions. We calculate the S-matrix by linking the CFT operator on the AdS boundary to the scattering state in flat-space. We use bulk operator reconstruction to study massless scalar scattering in the flat limit and solve the Klein-Gordon equation in global AdS2 for the massless scalar field. The solution is simple, involving a pure phase in global time and a sinusoidal function in the radial coordinate. This simplicity also extends to the smearing function, allowing us to map the scattering state to the CFT operator while taking AdS corrections into account.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信