{"title":"AdS2 中无质量标量散射的平坦极限","authors":"Sarthak Duary","doi":"10.1016/j.nuclphysb.2024.116687","DOIUrl":null,"url":null,"abstract":"<div><p>We explore the flat limit of massless scalar scattering in <span><math><msub><mrow><mi>AdS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We derive the <span><math><mn>1</mn><mo>→</mo><mn>1</mn></math></span> <span><math><mi>S</mi></math></span>-matrix from the CFT 2-point function. We show a key property of the <span><math><mn>2</mn><mo>→</mo><mn>2</mn></math></span> <span><math><mi>S</mi></math></span>-matrix in 2<em>d</em>, where the contact interaction in the flat limit gives momentum conserving delta function. We show the factorization of the <span><math><mi>n</mi><mo>→</mo><mi>n</mi></math></span> <span><math><mi>S</mi></math></span>-matrix for integrable models in the flat limit, focusing on contact interactions. We calculate the <span><math><mi>S</mi></math></span>-matrix by linking the CFT operator on the AdS boundary to the scattering state in flat-space. We use bulk operator reconstruction to study massless scalar scattering in the flat limit and solve the Klein-Gordon equation in global <span><math><msub><mrow><mi>AdS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> for the massless scalar field. The solution is simple, involving a pure phase in global time and a sinusoidal function in the radial coordinate. This simplicity also extends to the smearing function, allowing us to map the scattering state to the CFT operator while taking AdS corrections into account.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1007 ","pages":"Article 116687"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002530/pdfft?md5=06b9b2ed4f62c81782c84ef23949f708&pid=1-s2.0-S0550321324002530-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Flat limit of massless scalar scattering in AdS2\",\"authors\":\"Sarthak Duary\",\"doi\":\"10.1016/j.nuclphysb.2024.116687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We explore the flat limit of massless scalar scattering in <span><math><msub><mrow><mi>AdS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We derive the <span><math><mn>1</mn><mo>→</mo><mn>1</mn></math></span> <span><math><mi>S</mi></math></span>-matrix from the CFT 2-point function. We show a key property of the <span><math><mn>2</mn><mo>→</mo><mn>2</mn></math></span> <span><math><mi>S</mi></math></span>-matrix in 2<em>d</em>, where the contact interaction in the flat limit gives momentum conserving delta function. We show the factorization of the <span><math><mi>n</mi><mo>→</mo><mi>n</mi></math></span> <span><math><mi>S</mi></math></span>-matrix for integrable models in the flat limit, focusing on contact interactions. We calculate the <span><math><mi>S</mi></math></span>-matrix by linking the CFT operator on the AdS boundary to the scattering state in flat-space. We use bulk operator reconstruction to study massless scalar scattering in the flat limit and solve the Klein-Gordon equation in global <span><math><msub><mrow><mi>AdS</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> for the massless scalar field. The solution is simple, involving a pure phase in global time and a sinusoidal function in the radial coordinate. This simplicity also extends to the smearing function, allowing us to map the scattering state to the CFT operator while taking AdS corrections into account.</p></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1007 \",\"pages\":\"Article 116687\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002530/pdfft?md5=06b9b2ed4f62c81782c84ef23949f708&pid=1-s2.0-S0550321324002530-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002530\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002530","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
We explore the flat limit of massless scalar scattering in . We derive the -matrix from the CFT 2-point function. We show a key property of the -matrix in 2d, where the contact interaction in the flat limit gives momentum conserving delta function. We show the factorization of the -matrix for integrable models in the flat limit, focusing on contact interactions. We calculate the -matrix by linking the CFT operator on the AdS boundary to the scattering state in flat-space. We use bulk operator reconstruction to study massless scalar scattering in the flat limit and solve the Klein-Gordon equation in global for the massless scalar field. The solution is simple, involving a pure phase in global time and a sinusoidal function in the radial coordinate. This simplicity also extends to the smearing function, allowing us to map the scattering state to the CFT operator while taking AdS corrections into account.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.