面向半导体的等离子体的电子表面散射核

IF 2.4 3区 物理与天体物理 Q1 Mathematics
F. X. Bronold, F. Willert
{"title":"面向半导体的等离子体的电子表面散射核","authors":"F. X. Bronold, F. Willert","doi":"10.1103/physreve.110.035207","DOIUrl":null,"url":null,"abstract":"Employing the invariant embedding principle for the electron backscattering function, we present a scheme for constructing an electron surface scattering kernel to be used in the boundary condition for the electron Boltzmann equation of a plasma facing a semiconducting solid. The scheme takes the solid's microphysics responsible for electron emission and backscattering from the interface within a randium-jellium model into account and is applicable to dielectrics and metals as well. As an illustration, we consider silicon and germanium, describing the interface potential by a Schottky barrier and including impact ionization across the energy gap as well as scattering on phonons and ion cores. The emission yields deduced from the kernel agree well enough with measured data to support its use in the electron boundary condition of a plasma facing silicon or germanium.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"3 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron surface scattering kernel for a plasma facing a semiconductor\",\"authors\":\"F. X. Bronold, F. Willert\",\"doi\":\"10.1103/physreve.110.035207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Employing the invariant embedding principle for the electron backscattering function, we present a scheme for constructing an electron surface scattering kernel to be used in the boundary condition for the electron Boltzmann equation of a plasma facing a semiconducting solid. The scheme takes the solid's microphysics responsible for electron emission and backscattering from the interface within a randium-jellium model into account and is applicable to dielectrics and metals as well. As an illustration, we consider silicon and germanium, describing the interface potential by a Schottky barrier and including impact ionization across the energy gap as well as scattering on phonons and ion cores. The emission yields deduced from the kernel agree well enough with measured data to support its use in the electron boundary condition of a plasma facing silicon or germanium.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.035207\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.035207","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

利用电子反向散射函数的不变嵌入原理,我们提出了一种构建电子表面散射核的方案,该方案将用于面向半导体固体的等离子体的电子玻尔兹曼方程的边界条件。该方案考虑到了固体的微物理特性,即在钪-镓模型中负责电子发射和从界面反向散射的微物理特性,也适用于电介质和金属。作为说明,我们考虑了硅和锗,用肖特基势垒来描述界面电势,包括能隙间的撞击电离以及声子和离子核心的散射。从内核推导出的发射率与测量数据非常吻合,足以支持将其用于硅或锗等离子体的电子边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electron surface scattering kernel for a plasma facing a semiconductor

Electron surface scattering kernel for a plasma facing a semiconductor
Employing the invariant embedding principle for the electron backscattering function, we present a scheme for constructing an electron surface scattering kernel to be used in the boundary condition for the electron Boltzmann equation of a plasma facing a semiconducting solid. The scheme takes the solid's microphysics responsible for electron emission and backscattering from the interface within a randium-jellium model into account and is applicable to dielectrics and metals as well. As an illustration, we consider silicon and germanium, describing the interface potential by a Schottky barrier and including impact ionization across the energy gap as well as scattering on phonons and ion cores. The emission yields deduced from the kernel agree well enough with measured data to support its use in the electron boundary condition of a plasma facing silicon or germanium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信