在任意形状的容器中快速无荡涤地运输液体

IF 2.3 3区 工程技术 Q2 MECHANICS
Florian Toth, Andreas Scharner, Alexander Schirrer, Christoph Hametner, Stefan Jakubek
{"title":"在任意形状的容器中快速无荡涤地运输液体","authors":"Florian Toth, Andreas Scharner, Alexander Schirrer, Christoph Hametner, Stefan Jakubek","doi":"10.1007/s00707-024-04068-w","DOIUrl":null,"url":null,"abstract":"<p>We present a model-based feedforward control strategy suitable for designing swift rest-to-rest maneuvers for liquids in arbitrarily shaped containers. We employ the commonly used equivalent pendulum model to represent the sloshing dynamics and suggest a novel parameter identification scheme suitable for arbitrary container shapes and any number of sloshing modes. By computing natural modes and fluid reaction forces and torques for imposed harmonic container motions via a finite element model, we obtain data for the identification scheme. A fitting procedure then yields highly accurate parameters for a physical pendulum model, where each pendulum represents one sloshing mode. We also provide a thorough analysis of parameter identifiability and guidelines for obtaining robust parameter estimates. The proposed feedforward control method uses a virtual tray pendulum on which we place the container (in the form of its equivalent pendulum model). Designing the virtual tray such that the fluid’s dominant sloshing mode cannot be excited by horizontally moving the tray pendulum pivot effectively zeros out any sloshing motion in this mode. We then exploit the flatness property of the resulting system to design rest-to-rest maneuvers where any residual sloshing motion (in higher modes) can be exactly stopped at the end of the maneuver. The effectiveness of the proposed method is demonstrated through extensive simulations and experimental results using a Martini cocktail glass, whose shape is challenging in terms of sloshing. The experimental results show the successful, accurate suppression of sloshing, validating the efficacy of the proposed concept.</p>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"50 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid sloshing-free transport of liquids in arbitrarily shaped containers\",\"authors\":\"Florian Toth, Andreas Scharner, Alexander Schirrer, Christoph Hametner, Stefan Jakubek\",\"doi\":\"10.1007/s00707-024-04068-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a model-based feedforward control strategy suitable for designing swift rest-to-rest maneuvers for liquids in arbitrarily shaped containers. We employ the commonly used equivalent pendulum model to represent the sloshing dynamics and suggest a novel parameter identification scheme suitable for arbitrary container shapes and any number of sloshing modes. By computing natural modes and fluid reaction forces and torques for imposed harmonic container motions via a finite element model, we obtain data for the identification scheme. A fitting procedure then yields highly accurate parameters for a physical pendulum model, where each pendulum represents one sloshing mode. We also provide a thorough analysis of parameter identifiability and guidelines for obtaining robust parameter estimates. The proposed feedforward control method uses a virtual tray pendulum on which we place the container (in the form of its equivalent pendulum model). Designing the virtual tray such that the fluid’s dominant sloshing mode cannot be excited by horizontally moving the tray pendulum pivot effectively zeros out any sloshing motion in this mode. We then exploit the flatness property of the resulting system to design rest-to-rest maneuvers where any residual sloshing motion (in higher modes) can be exactly stopped at the end of the maneuver. The effectiveness of the proposed method is demonstrated through extensive simulations and experimental results using a Martini cocktail glass, whose shape is challenging in terms of sloshing. The experimental results show the successful, accurate suppression of sloshing, validating the efficacy of the proposed concept.</p>\",\"PeriodicalId\":456,\"journal\":{\"name\":\"Acta Mechanica\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00707-024-04068-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00707-024-04068-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于模型的前馈控制策略,适用于为任意形状容器中的液体设计从静止到静止的快速操控。我们采用常用的等效摆模型来表示荡动动力学,并提出了一种新颖的参数识别方案,适用于任意形状的容器和任意数量的荡动模式。通过有限元模型计算自然模式和流体反作用力及施加谐波容器运动的扭矩,我们获得了用于识别方案的数据。然后通过拟合程序为物理摆锤模型生成高度精确的参数,其中每个摆锤代表一种荡吸模式。我们还对参数可识别性进行了深入分析,并提供了获得稳健参数估计的指导原则。建议的前馈控制方法使用虚拟托盘摆,我们将容器(以其等效摆模型的形式)放置在虚拟托盘摆上。在设计虚拟托盘时,水平移动托盘摆的枢轴将无法激发流体的主要荡动模式,从而有效地消除了该模式下的任何荡动运动。然后,我们利用由此产生的系统的平整度特性来设计静止到静止操纵,在操纵结束时,任何残余的荡动运动(在更高的模式中)都可以被精确地停止。通过使用马天尼鸡尾酒杯的大量模拟和实验结果,证明了所提方法的有效性。实验结果表明,成功、准确地抑制了荡波,验证了所提概念的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid sloshing-free transport of liquids in arbitrarily shaped containers

Rapid sloshing-free transport of liquids in arbitrarily shaped containers

We present a model-based feedforward control strategy suitable for designing swift rest-to-rest maneuvers for liquids in arbitrarily shaped containers. We employ the commonly used equivalent pendulum model to represent the sloshing dynamics and suggest a novel parameter identification scheme suitable for arbitrary container shapes and any number of sloshing modes. By computing natural modes and fluid reaction forces and torques for imposed harmonic container motions via a finite element model, we obtain data for the identification scheme. A fitting procedure then yields highly accurate parameters for a physical pendulum model, where each pendulum represents one sloshing mode. We also provide a thorough analysis of parameter identifiability and guidelines for obtaining robust parameter estimates. The proposed feedforward control method uses a virtual tray pendulum on which we place the container (in the form of its equivalent pendulum model). Designing the virtual tray such that the fluid’s dominant sloshing mode cannot be excited by horizontally moving the tray pendulum pivot effectively zeros out any sloshing motion in this mode. We then exploit the flatness property of the resulting system to design rest-to-rest maneuvers where any residual sloshing motion (in higher modes) can be exactly stopped at the end of the maneuver. The effectiveness of the proposed method is demonstrated through extensive simulations and experimental results using a Martini cocktail glass, whose shape is challenging in terms of sloshing. The experimental results show the successful, accurate suppression of sloshing, validating the efficacy of the proposed concept.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica
Acta Mechanica 物理-力学
CiteScore
4.30
自引率
14.80%
发文量
292
审稿时长
6.9 months
期刊介绍: Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信