研究梯度纳米结构 AISI 304 L 不锈钢的微观结构动态和应变速率敏感性:TEM 和纳米压痕技术的启示

IF 3.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Digvijay Singh, Vikesh Kumar, Vickey Nandal, Santosh S. Hosmani
{"title":"研究梯度纳米结构 AISI 304 L 不锈钢的微观结构动态和应变速率敏感性:TEM 和纳米压痕技术的启示","authors":"Digvijay Singh, Vikesh Kumar, Vickey Nandal, Santosh S. Hosmani","doi":"10.1016/j.mtcomm.2024.110386","DOIUrl":null,"url":null,"abstract":"In recent years, gradient nanostructured (GNS) materials have gained significant attention due to their superior strength-ductility balance and enhanced functional properties compared to their coarse-grained counterparts. This research examines the microstructure evolution and nanomechanical responses of GNS AISI 304 L austenitic stainless steel using transmission electron microscopy (TEM) and nanoindentation techniques. Through surface mechanical attrition treatment (SMAT), a gradient nanostructured layer with ultrafine grains (∼15 nm) and nanoscale martensite (up to ∼40 %) within the austenite matrix has been successfully created on the steel’s surface. This treated surface exhibits a hardness of ∼6.7 GPa, nearly double the original value. The GNS layer demonstrates single-step (γ → α’) and two-step (γ → ε → α’) martensitic transformations, deformation twinning (γ -twin), a decrease in the density of deformation bands, compressive residual stress, lattice strain, and martensite content, along with an increase in grain size. Strain rate sensitivity (SRS) increases with austenitic grain size and inversely correlates with martensite proportion as depth increases in the GNS layer. A significant amount of ultrafine martensite is primarily responsible for the limited SRS in the topmost layer.","PeriodicalId":18477,"journal":{"name":"Materials Today Communications","volume":"21 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating microstructure dynamics and strain rate sensitivity in gradient nanostructured AISI 304 L stainless steel: TEM and nanoindentation insights\",\"authors\":\"Digvijay Singh, Vikesh Kumar, Vickey Nandal, Santosh S. Hosmani\",\"doi\":\"10.1016/j.mtcomm.2024.110386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, gradient nanostructured (GNS) materials have gained significant attention due to their superior strength-ductility balance and enhanced functional properties compared to their coarse-grained counterparts. This research examines the microstructure evolution and nanomechanical responses of GNS AISI 304 L austenitic stainless steel using transmission electron microscopy (TEM) and nanoindentation techniques. Through surface mechanical attrition treatment (SMAT), a gradient nanostructured layer with ultrafine grains (∼15 nm) and nanoscale martensite (up to ∼40 %) within the austenite matrix has been successfully created on the steel’s surface. This treated surface exhibits a hardness of ∼6.7 GPa, nearly double the original value. The GNS layer demonstrates single-step (γ → α’) and two-step (γ → ε → α’) martensitic transformations, deformation twinning (γ -twin), a decrease in the density of deformation bands, compressive residual stress, lattice strain, and martensite content, along with an increase in grain size. Strain rate sensitivity (SRS) increases with austenitic grain size and inversely correlates with martensite proportion as depth increases in the GNS layer. A significant amount of ultrafine martensite is primarily responsible for the limited SRS in the topmost layer.\",\"PeriodicalId\":18477,\"journal\":{\"name\":\"Materials Today Communications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtcomm.2024.110386\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtcomm.2024.110386","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,梯度纳米结构(GNS)材料因其优越的强度-电导率平衡和比粗粒度材料更强的功能特性而备受关注。本研究利用透射电子显微镜(TEM)和纳米压痕技术研究了 GNS AISI 304 L 奥氏体不锈钢的微观结构演变和纳米力学响应。通过表面机械研磨处理(SMAT),成功地在钢表面形成了一个梯度纳米结构层,奥氏体基体中含有超细晶粒(∼15 nm)和纳米级马氏体(高达∼40 %)。经过处理的表面硬度达到 6.7 GPa,几乎是原始值的两倍。GNS 层显示出单步(γ → α')和两步(γ → ε → α')马氏体转变、变形孪晶(γ -twin)、变形带密度下降、压缩残余应力、晶格应变和马氏体含量,同时晶粒尺寸增大。随着 GNS 层深度的增加,应变速率敏感性(SRS)随奥氏体晶粒尺寸的增加而增加,并与马氏体比例成反比。大量超细马氏体是最上层有限 SRS 的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating microstructure dynamics and strain rate sensitivity in gradient nanostructured AISI 304 L stainless steel: TEM and nanoindentation insights
In recent years, gradient nanostructured (GNS) materials have gained significant attention due to their superior strength-ductility balance and enhanced functional properties compared to their coarse-grained counterparts. This research examines the microstructure evolution and nanomechanical responses of GNS AISI 304 L austenitic stainless steel using transmission electron microscopy (TEM) and nanoindentation techniques. Through surface mechanical attrition treatment (SMAT), a gradient nanostructured layer with ultrafine grains (∼15 nm) and nanoscale martensite (up to ∼40 %) within the austenite matrix has been successfully created on the steel’s surface. This treated surface exhibits a hardness of ∼6.7 GPa, nearly double the original value. The GNS layer demonstrates single-step (γ → α’) and two-step (γ → ε → α’) martensitic transformations, deformation twinning (γ -twin), a decrease in the density of deformation bands, compressive residual stress, lattice strain, and martensite content, along with an increase in grain size. Strain rate sensitivity (SRS) increases with austenitic grain size and inversely correlates with martensite proportion as depth increases in the GNS layer. A significant amount of ultrafine martensite is primarily responsible for the limited SRS in the topmost layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Communications
Materials Today Communications Materials Science-General Materials Science
CiteScore
5.20
自引率
5.30%
发文量
1783
审稿时长
51 days
期刊介绍: Materials Today Communications is a primary research journal covering all areas of materials science. The journal offers the materials community an innovative, efficient and flexible route for the publication of original research which has not found the right home on first submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信