{"title":"若干温度和大气压力下的茚和线性/环状酮二元混合物的热物理性质","authors":"Dana Drăgoescu, Alexander Shchamialiou","doi":"10.1007/s10953-024-01403-6","DOIUrl":null,"url":null,"abstract":"<div><p>The thermophysical properties, as densities, speeds of sound, and refractive indices, for pure compounds: <i>iso</i>-propylbenzene (cumene), cyclopentanone, and diethylketone (3-pentanone), as well as for their two selected binary mixtures, have been measured over the entire range of composition, at few temperatures between (298.15 and 318.15) K and atmospheric pressure <i>p</i> = 0.1 MPa. From the experimental results, the thermodynamic properties, namely: the excess molar volumes, the partial or apparent molar volumes, the isentropic compressibilities, the excess isentropic compressibilities and the excess molar isentropic compressions, have been calculated. The values of experimental excess molar volumes have been used to test the applicability of the Prigogine–Flory–Patterson (PFP) theory and the results were analyzed in terms of molecular interactions and structural effects, occurred between the components of the mixtures. Moreover, from the measured densities data, the surface tensions and the surface tension deviations, for both mixtures have been predicted. Also, using the experimental density and speed of sound data, the acoustic impedance values were estimated. From the experimental refractive index data, the deviations in refractive indices, the molar refractions and the excess molar refractions, have been calculated. Furthermore, the refractive indices values have been used for the prediction of the space-filling factor and the specific refraction. All the excess thermodynamic properties calculated for both mixtures, have been correlated with composition by the Redlich–Kister polinomial equation. The values of the excess properties have been represented graphically. The parameters of correlation were estimated and their values have been reported at working temperatures.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 1","pages":"1 - 30"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermophysical Properties for Binary Mixtures of Cumene and Linear/Cyclic Ketones, at Several Temperatures and Atmospheric Pressure\",\"authors\":\"Dana Drăgoescu, Alexander Shchamialiou\",\"doi\":\"10.1007/s10953-024-01403-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermophysical properties, as densities, speeds of sound, and refractive indices, for pure compounds: <i>iso</i>-propylbenzene (cumene), cyclopentanone, and diethylketone (3-pentanone), as well as for their two selected binary mixtures, have been measured over the entire range of composition, at few temperatures between (298.15 and 318.15) K and atmospheric pressure <i>p</i> = 0.1 MPa. From the experimental results, the thermodynamic properties, namely: the excess molar volumes, the partial or apparent molar volumes, the isentropic compressibilities, the excess isentropic compressibilities and the excess molar isentropic compressions, have been calculated. The values of experimental excess molar volumes have been used to test the applicability of the Prigogine–Flory–Patterson (PFP) theory and the results were analyzed in terms of molecular interactions and structural effects, occurred between the components of the mixtures. Moreover, from the measured densities data, the surface tensions and the surface tension deviations, for both mixtures have been predicted. Also, using the experimental density and speed of sound data, the acoustic impedance values were estimated. From the experimental refractive index data, the deviations in refractive indices, the molar refractions and the excess molar refractions, have been calculated. Furthermore, the refractive indices values have been used for the prediction of the space-filling factor and the specific refraction. All the excess thermodynamic properties calculated for both mixtures, have been correlated with composition by the Redlich–Kister polinomial equation. The values of the excess properties have been represented graphically. The parameters of correlation were estimated and their values have been reported at working temperatures.</p></div>\",\"PeriodicalId\":666,\"journal\":{\"name\":\"Journal of Solution Chemistry\",\"volume\":\"54 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solution Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-024-01403-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-024-01403-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Thermophysical Properties for Binary Mixtures of Cumene and Linear/Cyclic Ketones, at Several Temperatures and Atmospheric Pressure
The thermophysical properties, as densities, speeds of sound, and refractive indices, for pure compounds: iso-propylbenzene (cumene), cyclopentanone, and diethylketone (3-pentanone), as well as for their two selected binary mixtures, have been measured over the entire range of composition, at few temperatures between (298.15 and 318.15) K and atmospheric pressure p = 0.1 MPa. From the experimental results, the thermodynamic properties, namely: the excess molar volumes, the partial or apparent molar volumes, the isentropic compressibilities, the excess isentropic compressibilities and the excess molar isentropic compressions, have been calculated. The values of experimental excess molar volumes have been used to test the applicability of the Prigogine–Flory–Patterson (PFP) theory and the results were analyzed in terms of molecular interactions and structural effects, occurred between the components of the mixtures. Moreover, from the measured densities data, the surface tensions and the surface tension deviations, for both mixtures have been predicted. Also, using the experimental density and speed of sound data, the acoustic impedance values were estimated. From the experimental refractive index data, the deviations in refractive indices, the molar refractions and the excess molar refractions, have been calculated. Furthermore, the refractive indices values have been used for the prediction of the space-filling factor and the specific refraction. All the excess thermodynamic properties calculated for both mixtures, have been correlated with composition by the Redlich–Kister polinomial equation. The values of the excess properties have been represented graphically. The parameters of correlation were estimated and their values have been reported at working temperatures.
期刊介绍:
Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.