钠离子在作为钠离子电池负极材料的联苯中的吸附和扩散透视:第一原理研究

IF 3.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yongyi Xu, Yingying Fu, Xiaxia Gong, Jing Xu, Wei Liu
{"title":"钠离子在作为钠离子电池负极材料的联苯中的吸附和扩散透视:第一原理研究","authors":"Yongyi Xu, Yingying Fu, Xiaxia Gong, Jing Xu, Wei Liu","doi":"10.1016/j.mtcomm.2024.110394","DOIUrl":null,"url":null,"abstract":"Anode materials are essential for the advancement of sodium-ion batteries (NIBs). This study comprehensively evaluates the biphenylene network (BP) as a promising anode material using first-principles calculations. Density functional theory (DFT) results reveal that sodium (Na) ions stably adsorb on BP surfaces, with adsorption energies ranging from −1.29 eV to −2.92 eV, due to effective charge transfer and hybridization between Na () and carbon () orbitals. The diffusion barriers for Na ion migration are 0.31 eV for the monolayer and 0.76 eV for the bilayer, with optimal paths involving the C8-ring and passing through C6- or C4-rings. Notably, edge sites were found to provide strong Na adsorption on monolayer BP nanoribbon, with low diffusion barriers (0.36 eV), revealing the critical role of edge configurations in enhancing the BP performance as an anode material. The theoretical capacity of Na on the BP monolayer is 908.52 mAh·g⁻¹, surpassing many other two-dimensional materials, and the average open circuit voltage (OCV) is 0.64 V. Overall, BP offers high Na storage capacity, low diffusion barriers, and suitable OCV, positioning it as a strong candidate for high-performance NIB anodes.","PeriodicalId":18477,"journal":{"name":"Materials Today Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into Na ion adsorption and diffusion in biphenylene as an anode material for sodium-ion batteries: A first-principles study\",\"authors\":\"Yongyi Xu, Yingying Fu, Xiaxia Gong, Jing Xu, Wei Liu\",\"doi\":\"10.1016/j.mtcomm.2024.110394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anode materials are essential for the advancement of sodium-ion batteries (NIBs). This study comprehensively evaluates the biphenylene network (BP) as a promising anode material using first-principles calculations. Density functional theory (DFT) results reveal that sodium (Na) ions stably adsorb on BP surfaces, with adsorption energies ranging from −1.29 eV to −2.92 eV, due to effective charge transfer and hybridization between Na () and carbon () orbitals. The diffusion barriers for Na ion migration are 0.31 eV for the monolayer and 0.76 eV for the bilayer, with optimal paths involving the C8-ring and passing through C6- or C4-rings. Notably, edge sites were found to provide strong Na adsorption on monolayer BP nanoribbon, with low diffusion barriers (0.36 eV), revealing the critical role of edge configurations in enhancing the BP performance as an anode material. The theoretical capacity of Na on the BP monolayer is 908.52 mAh·g⁻¹, surpassing many other two-dimensional materials, and the average open circuit voltage (OCV) is 0.64 V. Overall, BP offers high Na storage capacity, low diffusion barriers, and suitable OCV, positioning it as a strong candidate for high-performance NIB anodes.\",\"PeriodicalId\":18477,\"journal\":{\"name\":\"Materials Today Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtcomm.2024.110394\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtcomm.2024.110394","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

负极材料对于钠离子电池(NIB)的发展至关重要。本研究利用第一性原理计算全面评估了联苯网络(BP)作为一种有前途的负极材料。密度泛函理论(DFT)结果表明,由于钠()和碳()轨道之间有效的电荷转移和杂化,钠(Na)离子能稳定地吸附在 BP 表面,吸附能在 -1.29 eV 至 -2.92 eV 之间。Na 离子迁移的扩散障碍在单层中为 0.31 eV,在双层中为 0.76 eV,最佳路径涉及 C8 环,并通过 C6 环或 C4 环。值得注意的是,研究发现边缘位点在单层 BP 纳米带上对 Na 的吸附力很强,扩散阻力很低(0.36 eV),这揭示了边缘构型在提高 BP 作为阳极材料的性能方面所起的关键作用。BP 单层上 Na 的理论容量为 908.52 mAh-g-¹,超过了许多其他二维材料,平均开路电压(OCV)为 0.64 V。总体而言,BP 具有高 Na 储存能力、低扩散障碍和合适的开路电压,是高性能 NIB 阳极的有力候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into Na ion adsorption and diffusion in biphenylene as an anode material for sodium-ion batteries: A first-principles study
Anode materials are essential for the advancement of sodium-ion batteries (NIBs). This study comprehensively evaluates the biphenylene network (BP) as a promising anode material using first-principles calculations. Density functional theory (DFT) results reveal that sodium (Na) ions stably adsorb on BP surfaces, with adsorption energies ranging from −1.29 eV to −2.92 eV, due to effective charge transfer and hybridization between Na () and carbon () orbitals. The diffusion barriers for Na ion migration are 0.31 eV for the monolayer and 0.76 eV for the bilayer, with optimal paths involving the C8-ring and passing through C6- or C4-rings. Notably, edge sites were found to provide strong Na adsorption on monolayer BP nanoribbon, with low diffusion barriers (0.36 eV), revealing the critical role of edge configurations in enhancing the BP performance as an anode material. The theoretical capacity of Na on the BP monolayer is 908.52 mAh·g⁻¹, surpassing many other two-dimensional materials, and the average open circuit voltage (OCV) is 0.64 V. Overall, BP offers high Na storage capacity, low diffusion barriers, and suitable OCV, positioning it as a strong candidate for high-performance NIB anodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Communications
Materials Today Communications Materials Science-General Materials Science
CiteScore
5.20
自引率
5.30%
发文量
1783
审稿时长
51 days
期刊介绍: Materials Today Communications is a primary research journal covering all areas of materials science. The journal offers the materials community an innovative, efficient and flexible route for the publication of original research which has not found the right home on first submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信