拟南芥组蛋白 H3K4me3 结合型 ALFIN 类蛋白介导组蛋白 H2A 泛素化并协调多种染色质修饰

Xiao-Min Su, Dan-Yang Yuan, Lin Li, Minqi Yang, She Chen, Yue Zhou, Xin-Jian He
{"title":"拟南芥组蛋白 H3K4me3 结合型 ALFIN 类蛋白介导组蛋白 H2A 泛素化并协调多种染色质修饰","authors":"Xiao-Min Su, Dan-Yang Yuan, Lin Li, Minqi Yang, She Chen, Yue Zhou, Xin-Jian He","doi":"10.1101/2024.09.12.612777","DOIUrl":null,"url":null,"abstract":"The histone H3K4 trimethylation (H3K4me3) is widely distributed at numerous actively transcribed protein-coding genes throughout the genome. However, the interplay between H3K4me3 and other chromatin modifications remains poorly understood in plants. In this study, we find that the Arabidopsis thaliana H3K4me3-binding ALFIN-LIKE (AL) proteins are associated with H3K4me3-enriched genes at the whole-genome level. The AL proteins contain a C-terminal PHD finger, which has a conserved role in recognizing H3K4me3, and a PHD-associated AL (PAL) domain, which is responsible for binding to diverse chromatin-related proteins. We demonstrate that the AL proteins not only act as subunits of the Polycomb repressive complex 1 (PRC1) to mediate H2A ubiquitination at H3K4me3-enriched genes but also interact with a variety of other chromatin-related proteins. Furthermore, we elucidate the mechanisms by which AL proteins interact with other chromatin-associated proteins to integrate H3K4me3, H2A ubiquitination, H2A.Z deposition, H3K27 demethylation, and chromatin accessibility across the genome. These findings underscore the critical role of AL proteins in linking H3K4me3 with a variety of other chromatin modifications in plants.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Arabidopsis histone H3K4me3-binding ALFIN-like proteins mediate histone H2A ubiquitination and coordinate diverse chromatin modifications\",\"authors\":\"Xiao-Min Su, Dan-Yang Yuan, Lin Li, Minqi Yang, She Chen, Yue Zhou, Xin-Jian He\",\"doi\":\"10.1101/2024.09.12.612777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The histone H3K4 trimethylation (H3K4me3) is widely distributed at numerous actively transcribed protein-coding genes throughout the genome. However, the interplay between H3K4me3 and other chromatin modifications remains poorly understood in plants. In this study, we find that the Arabidopsis thaliana H3K4me3-binding ALFIN-LIKE (AL) proteins are associated with H3K4me3-enriched genes at the whole-genome level. The AL proteins contain a C-terminal PHD finger, which has a conserved role in recognizing H3K4me3, and a PHD-associated AL (PAL) domain, which is responsible for binding to diverse chromatin-related proteins. We demonstrate that the AL proteins not only act as subunits of the Polycomb repressive complex 1 (PRC1) to mediate H2A ubiquitination at H3K4me3-enriched genes but also interact with a variety of other chromatin-related proteins. Furthermore, we elucidate the mechanisms by which AL proteins interact with other chromatin-associated proteins to integrate H3K4me3, H2A ubiquitination, H2A.Z deposition, H3K27 demethylation, and chromatin accessibility across the genome. These findings underscore the critical role of AL proteins in linking H3K4me3 with a variety of other chromatin modifications in plants.\",\"PeriodicalId\":501341,\"journal\":{\"name\":\"bioRxiv - Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.12.612777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.612777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

组蛋白 H3K4 三甲基化(H3K4me3)广泛分布于整个基因组中许多活跃转录的蛋白编码基因上。然而,人们对植物中 H3K4me3 与其他染色质修饰之间的相互作用仍然知之甚少。在这项研究中,我们发现拟南芥 H3K4me3 结合 ALFIN-LIKE(AL)蛋白在全基因组水平上与 H3K4me3 富集基因相关。AL 蛋白包含一个 C 端 PHD 手指和一个 PHD 相关 AL(PAL)结构域,前者在识别 H3K4me3 方面起着保守作用,后者则负责与多种染色质相关蛋白结合。我们证明,AL 蛋白不仅作为多聚核抑制复合体 1(PRC1)的亚基介导 H3K4me3 富集基因上的 H2A 泛素化,而且还与其他多种染色质相关蛋白相互作用。此外,我们还阐明了 AL 蛋白与其他染色质相关蛋白相互作用以整合整个基因组的 H3K4me3、H2A 泛素化、H2A.Z 沉积、H3K27 去甲基化和染色质可及性的机制。这些发现强调了 AL 蛋白在植物中将 H3K4me3 与其他各种染色质修饰联系起来的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Arabidopsis histone H3K4me3-binding ALFIN-like proteins mediate histone H2A ubiquitination and coordinate diverse chromatin modifications
The histone H3K4 trimethylation (H3K4me3) is widely distributed at numerous actively transcribed protein-coding genes throughout the genome. However, the interplay between H3K4me3 and other chromatin modifications remains poorly understood in plants. In this study, we find that the Arabidopsis thaliana H3K4me3-binding ALFIN-LIKE (AL) proteins are associated with H3K4me3-enriched genes at the whole-genome level. The AL proteins contain a C-terminal PHD finger, which has a conserved role in recognizing H3K4me3, and a PHD-associated AL (PAL) domain, which is responsible for binding to diverse chromatin-related proteins. We demonstrate that the AL proteins not only act as subunits of the Polycomb repressive complex 1 (PRC1) to mediate H2A ubiquitination at H3K4me3-enriched genes but also interact with a variety of other chromatin-related proteins. Furthermore, we elucidate the mechanisms by which AL proteins interact with other chromatin-associated proteins to integrate H3K4me3, H2A ubiquitination, H2A.Z deposition, H3K27 demethylation, and chromatin accessibility across the genome. These findings underscore the critical role of AL proteins in linking H3K4me3 with a variety of other chromatin modifications in plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信