新的藻体连接蛋白 ApcI 调节 Synechocystis sp. PCC 6803 的强光适应性

Roberto Espinoza-Corral, Tomáš Zavřel, Markus Sutter, Chase H Leslie, Kunwei Yang, Warren F Beck, Jan Červený, Cheryl A Kerfeld
{"title":"新的藻体连接蛋白 ApcI 调节 Synechocystis sp. PCC 6803 的强光适应性","authors":"Roberto Espinoza-Corral, Tomáš Zavřel, Markus Sutter, Chase H Leslie, Kunwei Yang, Warren F Beck, Jan Červený, Cheryl A Kerfeld","doi":"10.1101/2024.09.09.612062","DOIUrl":null,"url":null,"abstract":"Phycobilisomes are versatile cyanobacterial antenna complexes that harvest light energy to drive photosynthesis. These complexes can also adapt to various light conditions, dismantling under high light to prevent photo-oxidation and arranging in rows under low light to increase light harvesting efficiency. Light quality also influences phycobilisome structure and function, as observed under far-red light exposure. Here we describe a new, phycobilisome linker protein, ApcI (previously hypothetical protein sll1911), expressed specifically under red light. We characterized ApcI in Synechocystis sp. PCC 6803 using mutant strain analyses, phycobilisome binding experiments, and protein interaction studies. Mutation of apcI conferred high light tolerance to Synechocystis sp. PCC 6803 compared to wild type with reduced energy transfer from phycobilisomes to the photosystems. Binding experiments revealed that ApcI replaces the linker protein ApcG at the membrane-facing side of the phycobilisome core using a paralogous C-terminal domain. Additionally, the N-terminal extension of ApcI was found to interact with photosystem II. Our findings highlight the importance of phycobilisome remodeling for adaptation under different light conditions. The characterization of ApcI provides new insights into the mechanisms by which cyanobacteria optimize light-harvesting in response to varying light environments.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The new phycobilisome linker protein ApcI regulates high light adaptation in Synechocystis sp. PCC 6803\",\"authors\":\"Roberto Espinoza-Corral, Tomáš Zavřel, Markus Sutter, Chase H Leslie, Kunwei Yang, Warren F Beck, Jan Červený, Cheryl A Kerfeld\",\"doi\":\"10.1101/2024.09.09.612062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phycobilisomes are versatile cyanobacterial antenna complexes that harvest light energy to drive photosynthesis. These complexes can also adapt to various light conditions, dismantling under high light to prevent photo-oxidation and arranging in rows under low light to increase light harvesting efficiency. Light quality also influences phycobilisome structure and function, as observed under far-red light exposure. Here we describe a new, phycobilisome linker protein, ApcI (previously hypothetical protein sll1911), expressed specifically under red light. We characterized ApcI in Synechocystis sp. PCC 6803 using mutant strain analyses, phycobilisome binding experiments, and protein interaction studies. Mutation of apcI conferred high light tolerance to Synechocystis sp. PCC 6803 compared to wild type with reduced energy transfer from phycobilisomes to the photosystems. Binding experiments revealed that ApcI replaces the linker protein ApcG at the membrane-facing side of the phycobilisome core using a paralogous C-terminal domain. Additionally, the N-terminal extension of ApcI was found to interact with photosystem II. Our findings highlight the importance of phycobilisome remodeling for adaptation under different light conditions. The characterization of ApcI provides new insights into the mechanisms by which cyanobacteria optimize light-harvesting in response to varying light environments.\",\"PeriodicalId\":501341,\"journal\":{\"name\":\"bioRxiv - Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.09.612062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.612062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

叶绿体是一种多功能蓝藻天线复合体,可收集光能以驱动光合作用。这些复合体还能适应各种光照条件,在强光下分解以防止光氧化,在弱光下排列成行以提高光收集效率。光质也会影响藻体的结构和功能,如在远红光照射下观察到的那样。在这里,我们描述了一种新的藻体连接蛋白ApcI(以前的假说蛋白sll1911),它在红光下特异表达。我们利用突变菌株分析、藻胶体结合实验和蛋白质相互作用研究对 Synechocystis sp.与野生型相比,apcI 的突变赋予了 Synechocystis sp.结合实验表明,ApcI利用一个同源的C-末端结构域取代了连接蛋白ApcG位于藻体核心面向膜的一侧。此外,还发现 ApcI 的 N 端延伸部分与光系统 II 相互作用。我们的发现凸显了藻体重塑对适应不同光照条件的重要性。ApcI的表征为蓝藻优化光收集以应对不同光环境的机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The new phycobilisome linker protein ApcI regulates high light adaptation in Synechocystis sp. PCC 6803
Phycobilisomes are versatile cyanobacterial antenna complexes that harvest light energy to drive photosynthesis. These complexes can also adapt to various light conditions, dismantling under high light to prevent photo-oxidation and arranging in rows under low light to increase light harvesting efficiency. Light quality also influences phycobilisome structure and function, as observed under far-red light exposure. Here we describe a new, phycobilisome linker protein, ApcI (previously hypothetical protein sll1911), expressed specifically under red light. We characterized ApcI in Synechocystis sp. PCC 6803 using mutant strain analyses, phycobilisome binding experiments, and protein interaction studies. Mutation of apcI conferred high light tolerance to Synechocystis sp. PCC 6803 compared to wild type with reduced energy transfer from phycobilisomes to the photosystems. Binding experiments revealed that ApcI replaces the linker protein ApcG at the membrane-facing side of the phycobilisome core using a paralogous C-terminal domain. Additionally, the N-terminal extension of ApcI was found to interact with photosystem II. Our findings highlight the importance of phycobilisome remodeling for adaptation under different light conditions. The characterization of ApcI provides new insights into the mechanisms by which cyanobacteria optimize light-harvesting in response to varying light environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信