用于催化加氢的热解 Ru-MOFs 在 RuO2 上的纳米 Ru 粒子

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jun Xie, Yanxu Ma, Jiazhen Shi, Yuan Xu, Hua Cheng, Meng Gao, Kunhua Wang, Meili Guan, Liangmin Ning, Hao Yu
{"title":"用于催化加氢的热解 Ru-MOFs 在 RuO2 上的纳米 Ru 粒子","authors":"Jun Xie, Yanxu Ma, Jiazhen Shi, Yuan Xu, Hua Cheng, Meng Gao, Kunhua Wang, Meili Guan, Liangmin Ning, Hao Yu","doi":"10.1021/acsanm.4c04033","DOIUrl":null,"url":null,"abstract":"The domain-limited catalyst, with its unique design of encapsulating active sites within nanoscale domains, significantly enhances catalytic efficiency and selectivity, while improving the stability and recyclability of the catalyst, which holds great significance for industrial applications. This paper presents a design strategy for a Ru-RuO<sub>2</sub>/N–C domain-limited catalyst. This catalyst utilizes the porous structure of metal–organic frameworks (ZJU-100) to optimize the stability and selectivity of the ruthenium active site through spatial confinement effects. During the preparation process, the ruthenium complex (Ru(bpy)<sub>3</sub>Cl<sub>2</sub>·6H<sub>2</sub>O) is first introduced in situ into the synthetic system of ZJU-100 (Zn-MOFs), followed by high-temperature pyrolysis of the precursor at 900 °C. In this process, the zinc metal nodes in the MOFs are reduced and evaporated, while the nitrogen from the ruthenium complex and the carbon from the MOFs framework confine the growth and distribution of ruthenium species, resulting in a uniform particle size distribution of 2–5 nm. The presence of Ru(0) and RuO<sub>2</sub> species in the catalyst is confirmed through XPS and HRTEM characterizations. This structural characteristic greatly promotes the selective hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Further studies reveal the reaction mechanism, finding that the formation of Ru–O bonds and the modulation of the oxidation state of ruthenium atoms play a crucial role in the catalytic activity of ruthenium catalysts. This provides an important theoretical foundation for designing efficient and stable ruthenium-based catalysts.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoparticles of Ru on RuO2 from Pyrolysis of Ru-MOFs for Catalytic Hydrogenation\",\"authors\":\"Jun Xie, Yanxu Ma, Jiazhen Shi, Yuan Xu, Hua Cheng, Meng Gao, Kunhua Wang, Meili Guan, Liangmin Ning, Hao Yu\",\"doi\":\"10.1021/acsanm.4c04033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The domain-limited catalyst, with its unique design of encapsulating active sites within nanoscale domains, significantly enhances catalytic efficiency and selectivity, while improving the stability and recyclability of the catalyst, which holds great significance for industrial applications. This paper presents a design strategy for a Ru-RuO<sub>2</sub>/N–C domain-limited catalyst. This catalyst utilizes the porous structure of metal–organic frameworks (ZJU-100) to optimize the stability and selectivity of the ruthenium active site through spatial confinement effects. During the preparation process, the ruthenium complex (Ru(bpy)<sub>3</sub>Cl<sub>2</sub>·6H<sub>2</sub>O) is first introduced in situ into the synthetic system of ZJU-100 (Zn-MOFs), followed by high-temperature pyrolysis of the precursor at 900 °C. In this process, the zinc metal nodes in the MOFs are reduced and evaporated, while the nitrogen from the ruthenium complex and the carbon from the MOFs framework confine the growth and distribution of ruthenium species, resulting in a uniform particle size distribution of 2–5 nm. The presence of Ru(0) and RuO<sub>2</sub> species in the catalyst is confirmed through XPS and HRTEM characterizations. This structural characteristic greatly promotes the selective hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Further studies reveal the reaction mechanism, finding that the formation of Ru–O bonds and the modulation of the oxidation state of ruthenium atoms play a crucial role in the catalytic activity of ruthenium catalysts. This provides an important theoretical foundation for designing efficient and stable ruthenium-based catalysts.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsanm.4c04033\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsanm.4c04033","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

限域催化剂采用将活性位点封装在纳米级畴内的独特设计,显著提高了催化效率和选择性,同时改善了催化剂的稳定性和可回收性,对工业应用具有重要意义。本文介绍了一种 Ru-RuO2/N-C 限域催化剂的设计策略。该催化剂利用金属有机框架(ZJU-100)的多孔结构,通过空间限制效应优化钌活性位点的稳定性和选择性。在制备过程中,首先将钌络合物(Ru(bpy)3Cl2-6H2O)原位引入 ZJU-100 (Zn-MOFs)合成体系,然后在 900 °C 下对前驱体进行高温热解。在此过程中,MOFs 中的锌金属节点被还原并蒸发,而钌络合物中的氮和 MOFs 框架中的碳则限制了钌物种的生长和分布,从而形成了 2-5 纳米的均匀粒度分布。XPS 和 HRTEM 表征证实了催化剂中存在 Ru(0) 和 RuO2 物种。这一结构特征极大地促进了 4-硝基苯酚(4-NP)向 4-氨基苯酚(4-AP)的选择性氢化。进一步的研究揭示了反应机理,发现 Ru-O 键的形成和钌原子氧化态的调节对钌催化剂的催化活性起着至关重要的作用。这为设计高效稳定的钌基催化剂提供了重要的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoparticles of Ru on RuO2 from Pyrolysis of Ru-MOFs for Catalytic Hydrogenation

Nanoparticles of Ru on RuO2 from Pyrolysis of Ru-MOFs for Catalytic Hydrogenation
The domain-limited catalyst, with its unique design of encapsulating active sites within nanoscale domains, significantly enhances catalytic efficiency and selectivity, while improving the stability and recyclability of the catalyst, which holds great significance for industrial applications. This paper presents a design strategy for a Ru-RuO2/N–C domain-limited catalyst. This catalyst utilizes the porous structure of metal–organic frameworks (ZJU-100) to optimize the stability and selectivity of the ruthenium active site through spatial confinement effects. During the preparation process, the ruthenium complex (Ru(bpy)3Cl2·6H2O) is first introduced in situ into the synthetic system of ZJU-100 (Zn-MOFs), followed by high-temperature pyrolysis of the precursor at 900 °C. In this process, the zinc metal nodes in the MOFs are reduced and evaporated, while the nitrogen from the ruthenium complex and the carbon from the MOFs framework confine the growth and distribution of ruthenium species, resulting in a uniform particle size distribution of 2–5 nm. The presence of Ru(0) and RuO2 species in the catalyst is confirmed through XPS and HRTEM characterizations. This structural characteristic greatly promotes the selective hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Further studies reveal the reaction mechanism, finding that the formation of Ru–O bonds and the modulation of the oxidation state of ruthenium atoms play a crucial role in the catalytic activity of ruthenium catalysts. This provides an important theoretical foundation for designing efficient and stable ruthenium-based catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信