从多模式演示中学习任务规划,实现多阶段接触式丰富操纵

Kejia Chen, Zheng Shen, Yue Zhang, Lingyun Chen, Fan Wu, Zhenshan Bing, Sami Haddadin, Alois Knoll
{"title":"从多模式演示中学习任务规划,实现多阶段接触式丰富操纵","authors":"Kejia Chen, Zheng Shen, Yue Zhang, Lingyun Chen, Fan Wu, Zhenshan Bing, Sami Haddadin, Alois Knoll","doi":"arxiv-2409.11863","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) have gained popularity in task planning for\nlong-horizon manipulation tasks. To enhance the validity of LLM-generated\nplans, visual demonstrations and online videos have been widely employed to\nguide the planning process. However, for manipulation tasks involving subtle\nmovements but rich contact interactions, visual perception alone may be\ninsufficient for the LLM to fully interpret the demonstration. Additionally,\nvisual data provides limited information on force-related parameters and\nconditions, which are crucial for effective execution on real robots. In this paper, we introduce an in-context learning framework that\nincorporates tactile and force-torque information from human demonstrations to\nenhance LLMs' ability to generate plans for new task scenarios. We propose a\nbootstrapped reasoning pipeline that sequentially integrates each modality into\na comprehensive task plan. This task plan is then used as a reference for\nplanning in new task configurations. Real-world experiments on two different\nsequential manipulation tasks demonstrate the effectiveness of our framework in\nimproving LLMs' understanding of multi-modal demonstrations and enhancing the\noverall planning performance.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Task Planning from Multi-Modal Demonstration for Multi-Stage Contact-Rich Manipulation\",\"authors\":\"Kejia Chen, Zheng Shen, Yue Zhang, Lingyun Chen, Fan Wu, Zhenshan Bing, Sami Haddadin, Alois Knoll\",\"doi\":\"arxiv-2409.11863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models (LLMs) have gained popularity in task planning for\\nlong-horizon manipulation tasks. To enhance the validity of LLM-generated\\nplans, visual demonstrations and online videos have been widely employed to\\nguide the planning process. However, for manipulation tasks involving subtle\\nmovements but rich contact interactions, visual perception alone may be\\ninsufficient for the LLM to fully interpret the demonstration. Additionally,\\nvisual data provides limited information on force-related parameters and\\nconditions, which are crucial for effective execution on real robots. In this paper, we introduce an in-context learning framework that\\nincorporates tactile and force-torque information from human demonstrations to\\nenhance LLMs' ability to generate plans for new task scenarios. We propose a\\nbootstrapped reasoning pipeline that sequentially integrates each modality into\\na comprehensive task plan. This task plan is then used as a reference for\\nplanning in new task configurations. Real-world experiments on two different\\nsequential manipulation tasks demonstrate the effectiveness of our framework in\\nimproving LLMs' understanding of multi-modal demonstrations and enhancing the\\noverall planning performance.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)在长视距操作任务规划中越来越受欢迎。为了提高 LLM 生成的计划的有效性,人们广泛采用视觉演示和在线视频来指导计划过程。然而,对于涉及细微动作但接触互动丰富的操纵任务,仅靠视觉感知可能不足以让 LLM 完全理解演示。此外,视觉数据提供的与力相关的参数和条件信息也很有限,而这些信息对于在真实机器人上有效执行任务至关重要。在本文中,我们介绍了一种情境学习框架,该框架结合了人类演示中的触觉和力-扭矩信息,以增强 LLM 为新任务场景生成计划的能力。我们提出了一个引导式推理流水线,该流水线将每种模式依次整合到一个综合任务计划中。然后,该任务计划将作为新任务配置计划的参考。在两个不同的顺序操作任务上进行的真实世界实验证明了我们的框架在改善 LLM 对多模态演示的理解和提高整体规划性能方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Task Planning from Multi-Modal Demonstration for Multi-Stage Contact-Rich Manipulation
Large Language Models (LLMs) have gained popularity in task planning for long-horizon manipulation tasks. To enhance the validity of LLM-generated plans, visual demonstrations and online videos have been widely employed to guide the planning process. However, for manipulation tasks involving subtle movements but rich contact interactions, visual perception alone may be insufficient for the LLM to fully interpret the demonstration. Additionally, visual data provides limited information on force-related parameters and conditions, which are crucial for effective execution on real robots. In this paper, we introduce an in-context learning framework that incorporates tactile and force-torque information from human demonstrations to enhance LLMs' ability to generate plans for new task scenarios. We propose a bootstrapped reasoning pipeline that sequentially integrates each modality into a comprehensive task plan. This task plan is then used as a reference for planning in new task configurations. Real-world experiments on two different sequential manipulation tasks demonstrate the effectiveness of our framework in improving LLMs' understanding of multi-modal demonstrations and enhancing the overall planning performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信