动态环境中基于粒子的实例感知语义占用映射

Gang Chen, Zhaoying Wang, Wei Dong, Javier Alonso-Mora
{"title":"动态环境中基于粒子的实例感知语义占用映射","authors":"Gang Chen, Zhaoying Wang, Wei Dong, Javier Alonso-Mora","doi":"arxiv-2409.11975","DOIUrl":null,"url":null,"abstract":"Representing the 3D environment with instance-aware semantic and geometric\ninformation is crucial for interaction-aware robots in dynamic environments.\nNonetheless, creating such a representation poses challenges due to sensor\nnoise, instance segmentation and tracking errors, and the objects' dynamic\nmotion. This paper introduces a novel particle-based instance-aware semantic\noccupancy map to tackle these challenges. Particles with an augmented instance\nstate are used to estimate the Probability Hypothesis Density (PHD) of the\nobjects and implicitly model the environment. Utilizing a State-augmented\nSequential Monte Carlo PHD (S$^2$MC-PHD) filter, these particles are updated to\njointly estimate occupancy status, semantic, and instance IDs, mitigating\nnoise. Additionally, a memory module is adopted to enhance the map's\nresponsiveness to previously observed objects. Experimental results on the\nVirtual KITTI 2 dataset demonstrate that the proposed approach surpasses\nstate-of-the-art methods across multiple metrics under different noise\nconditions. Subsequent tests using real-world data further validate the\neffectiveness of the proposed approach.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":"198 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle-based Instance-aware Semantic Occupancy Mapping in Dynamic Environments\",\"authors\":\"Gang Chen, Zhaoying Wang, Wei Dong, Javier Alonso-Mora\",\"doi\":\"arxiv-2409.11975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representing the 3D environment with instance-aware semantic and geometric\\ninformation is crucial for interaction-aware robots in dynamic environments.\\nNonetheless, creating such a representation poses challenges due to sensor\\nnoise, instance segmentation and tracking errors, and the objects' dynamic\\nmotion. This paper introduces a novel particle-based instance-aware semantic\\noccupancy map to tackle these challenges. Particles with an augmented instance\\nstate are used to estimate the Probability Hypothesis Density (PHD) of the\\nobjects and implicitly model the environment. Utilizing a State-augmented\\nSequential Monte Carlo PHD (S$^2$MC-PHD) filter, these particles are updated to\\njointly estimate occupancy status, semantic, and instance IDs, mitigating\\nnoise. Additionally, a memory module is adopted to enhance the map's\\nresponsiveness to previously observed objects. Experimental results on the\\nVirtual KITTI 2 dataset demonstrate that the proposed approach surpasses\\nstate-of-the-art methods across multiple metrics under different noise\\nconditions. Subsequent tests using real-world data further validate the\\neffectiveness of the proposed approach.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":\"198 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

然而,由于传感器噪声、实例分割和跟踪误差以及物体的动态运动,创建这种表示方法面临着挑战。本文介绍了一种新颖的基于粒子的实例感知语义占位图来应对这些挑战。具有增强实例状态的粒子被用来估计物体的概率假设密度(PHD),并对环境进行隐式建模。利用状态增强序列蒙特卡洛 PHD(S$^2$MC-PHD)滤波器,对这些粒子进行更新,以联合估计占用状态、语义和实例 ID,从而降低噪声。此外,还采用了记忆模块来增强地图对先前观察到的对象的反应能力。在虚拟 KITTI 2 数据集上的实验结果表明,在不同的噪声条件下,所提出的方法在多个指标上都超过了目前最先进的方法。随后使用真实世界数据进行的测试进一步验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle-based Instance-aware Semantic Occupancy Mapping in Dynamic Environments
Representing the 3D environment with instance-aware semantic and geometric information is crucial for interaction-aware robots in dynamic environments. Nonetheless, creating such a representation poses challenges due to sensor noise, instance segmentation and tracking errors, and the objects' dynamic motion. This paper introduces a novel particle-based instance-aware semantic occupancy map to tackle these challenges. Particles with an augmented instance state are used to estimate the Probability Hypothesis Density (PHD) of the objects and implicitly model the environment. Utilizing a State-augmented Sequential Monte Carlo PHD (S$^2$MC-PHD) filter, these particles are updated to jointly estimate occupancy status, semantic, and instance IDs, mitigating noise. Additionally, a memory module is adopted to enhance the map's responsiveness to previously observed objects. Experimental results on the Virtual KITTI 2 dataset demonstrate that the proposed approach surpasses state-of-the-art methods across multiple metrics under different noise conditions. Subsequent tests using real-world data further validate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信