具有体积占位映射的不确定性感知视觉惯性 SLAM

Jaehyung Jung, Simon Boche, Sebastian Barbas Laina, Stefan Leutenegger
{"title":"具有体积占位映射的不确定性感知视觉惯性 SLAM","authors":"Jaehyung Jung, Simon Boche, Sebastian Barbas Laina, Stefan Leutenegger","doi":"arxiv-2409.12051","DOIUrl":null,"url":null,"abstract":"We propose visual-inertial simultaneous localization and mapping that tightly\ncouples sparse reprojection errors, inertial measurement unit pre-integrals,\nand relative pose factors with dense volumetric occupancy mapping. Hereby depth\npredictions from a deep neural network are fused in a fully probabilistic\nmanner. Specifically, our method is rigorously uncertainty-aware: first, we use\ndepth and uncertainty predictions from a deep network not only from the robot's\nstereo rig, but we further probabilistically fuse motion stereo that provides\ndepth information across a range of baselines, therefore drastically increasing\nmapping accuracy. Next, predicted and fused depth uncertainty propagates not\nonly into occupancy probabilities but also into alignment factors between\ngenerated dense submaps that enter the probabilistic nonlinear least squares\nestimator. This submap representation offers globally consistent geometry at\nscale. Our method is thoroughly evaluated in two benchmark datasets, resulting\nin localization and mapping accuracy that exceeds the state of the art, while\nsimultaneously offering volumetric occupancy directly usable for downstream\nrobotic planning and control in real-time.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty-Aware Visual-Inertial SLAM with Volumetric Occupancy Mapping\",\"authors\":\"Jaehyung Jung, Simon Boche, Sebastian Barbas Laina, Stefan Leutenegger\",\"doi\":\"arxiv-2409.12051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose visual-inertial simultaneous localization and mapping that tightly\\ncouples sparse reprojection errors, inertial measurement unit pre-integrals,\\nand relative pose factors with dense volumetric occupancy mapping. Hereby depth\\npredictions from a deep neural network are fused in a fully probabilistic\\nmanner. Specifically, our method is rigorously uncertainty-aware: first, we use\\ndepth and uncertainty predictions from a deep network not only from the robot's\\nstereo rig, but we further probabilistically fuse motion stereo that provides\\ndepth information across a range of baselines, therefore drastically increasing\\nmapping accuracy. Next, predicted and fused depth uncertainty propagates not\\nonly into occupancy probabilities but also into alignment factors between\\ngenerated dense submaps that enter the probabilistic nonlinear least squares\\nestimator. This submap representation offers globally consistent geometry at\\nscale. Our method is thoroughly evaluated in two benchmark datasets, resulting\\nin localization and mapping accuracy that exceeds the state of the art, while\\nsimultaneously offering volumetric occupancy directly usable for downstream\\nrobotic planning and control in real-time.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了视觉-惯性同步定位和映射技术,它将稀疏的重投影误差、惯性测量单元预积分和相对姿态因素与密集的容积占位映射紧密结合在一起。因此,深度神经网络的深度预测是以完全概率的方式融合在一起的。具体来说,我们的方法具有严格的不确定性感知能力:首先,我们不仅使用了来自机器人立体钻机的深度和不确定性预测,而且还进一步以概率方式融合了提供一系列基线深度信息的运动立体图,从而大幅提高了测绘精度。接下来,预测和融合深度的不确定性不仅会传播到占用概率中,还会传播到生成的密集子地图之间的对齐因子中,这些子地图会进入概率非线性最小二乘法估计器。这种子映射表示法在尺度上提供了全局一致的几何图形。我们的方法在两个基准数据集中进行了全面评估,其定位和绘图精度均超过了目前的技术水平,同时还提供了可直接用于下游机器人实时规划和控制的体积占用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty-Aware Visual-Inertial SLAM with Volumetric Occupancy Mapping
We propose visual-inertial simultaneous localization and mapping that tightly couples sparse reprojection errors, inertial measurement unit pre-integrals, and relative pose factors with dense volumetric occupancy mapping. Hereby depth predictions from a deep neural network are fused in a fully probabilistic manner. Specifically, our method is rigorously uncertainty-aware: first, we use depth and uncertainty predictions from a deep network not only from the robot's stereo rig, but we further probabilistically fuse motion stereo that provides depth information across a range of baselines, therefore drastically increasing mapping accuracy. Next, predicted and fused depth uncertainty propagates not only into occupancy probabilities but also into alignment factors between generated dense submaps that enter the probabilistic nonlinear least squares estimator. This submap representation offers globally consistent geometry at scale. Our method is thoroughly evaluated in two benchmark datasets, resulting in localization and mapping accuracy that exceeds the state of the art, while simultaneously offering volumetric occupancy directly usable for downstream robotic planning and control in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信