DroneDiffusion:利用扩散模型进行稳健的四旋翼动态学习

Avirup Das, Rishabh Dev Yadav, Sihao Sun, Mingfei Sun, Samuel Kaski, Wei Pan
{"title":"DroneDiffusion:利用扩散模型进行稳健的四旋翼动态学习","authors":"Avirup Das, Rishabh Dev Yadav, Sihao Sun, Mingfei Sun, Samuel Kaski, Wei Pan","doi":"arxiv-2409.11292","DOIUrl":null,"url":null,"abstract":"An inherent fragility of quadrotor systems stems from model inaccuracies and\nexternal disturbances. These factors hinder performance and compromise the\nstability of the system, making precise control challenging. Existing\nmodel-based approaches either make deterministic assumptions, utilize\nGaussian-based representations of uncertainty, or rely on nominal models, all\nof which often fall short in capturing the complex, multimodal nature of\nreal-world dynamics. This work introduces DroneDiffusion, a novel framework\nthat leverages conditional diffusion models to learn quadrotor dynamics,\nformulated as a sequence generation task. DroneDiffusion achieves superior\ngeneralization to unseen, complex scenarios by capturing the temporal nature of\nuncertainties and mitigating error propagation. We integrate the learned\ndynamics with an adaptive controller for trajectory tracking with stability\nguarantees. Extensive experiments in both simulation and real-world flights\ndemonstrate the robustness of the framework across a range of scenarios,\nincluding unfamiliar flight paths and varying payloads, velocities, and wind\ndisturbances.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DroneDiffusion: Robust Quadrotor Dynamics Learning with Diffusion Models\",\"authors\":\"Avirup Das, Rishabh Dev Yadav, Sihao Sun, Mingfei Sun, Samuel Kaski, Wei Pan\",\"doi\":\"arxiv-2409.11292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An inherent fragility of quadrotor systems stems from model inaccuracies and\\nexternal disturbances. These factors hinder performance and compromise the\\nstability of the system, making precise control challenging. Existing\\nmodel-based approaches either make deterministic assumptions, utilize\\nGaussian-based representations of uncertainty, or rely on nominal models, all\\nof which often fall short in capturing the complex, multimodal nature of\\nreal-world dynamics. This work introduces DroneDiffusion, a novel framework\\nthat leverages conditional diffusion models to learn quadrotor dynamics,\\nformulated as a sequence generation task. DroneDiffusion achieves superior\\ngeneralization to unseen, complex scenarios by capturing the temporal nature of\\nuncertainties and mitigating error propagation. We integrate the learned\\ndynamics with an adaptive controller for trajectory tracking with stability\\nguarantees. Extensive experiments in both simulation and real-world flights\\ndemonstrate the robustness of the framework across a range of scenarios,\\nincluding unfamiliar flight paths and varying payloads, velocities, and wind\\ndisturbances.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

四旋翼飞行器系统固有的脆弱性源于模型的不准确性和外部干扰。这些因素阻碍了系统的性能并损害了系统的稳定性,使精确控制变得十分困难。现有的基于模型的方法要么是确定性假设,要么是利用基于高斯的不确定性表示法,要么是依赖于名义模型,所有这些方法往往无法捕捉现实世界动态的复杂性和多模态性。这项工作介绍了 DroneDiffusion,这是一种利用条件扩散模型学习四旋翼飞行器动态的新型框架,它被表述为一个序列生成任务。DroneDiffusion 通过捕捉不确定性的时间性和减少错误传播,实现了对未知复杂场景的卓越泛化。我们将学习到的动力学与自适应控制器相结合,实现了具有稳定性保证的轨迹跟踪。在模拟和实际飞行中进行的大量实验证明了该框架在各种情况下的鲁棒性,包括不熟悉的飞行路径和不同的有效载荷、速度和风力干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DroneDiffusion: Robust Quadrotor Dynamics Learning with Diffusion Models
An inherent fragility of quadrotor systems stems from model inaccuracies and external disturbances. These factors hinder performance and compromise the stability of the system, making precise control challenging. Existing model-based approaches either make deterministic assumptions, utilize Gaussian-based representations of uncertainty, or rely on nominal models, all of which often fall short in capturing the complex, multimodal nature of real-world dynamics. This work introduces DroneDiffusion, a novel framework that leverages conditional diffusion models to learn quadrotor dynamics, formulated as a sequence generation task. DroneDiffusion achieves superior generalization to unseen, complex scenarios by capturing the temporal nature of uncertainties and mitigating error propagation. We integrate the learned dynamics with an adaptive controller for trajectory tracking with stability guarantees. Extensive experiments in both simulation and real-world flights demonstrate the robustness of the framework across a range of scenarios, including unfamiliar flight paths and varying payloads, velocities, and wind disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信