{"title":"海豚(Tursiops truncatus)在噪声干扰和同时呈现噪声信号的空间不确定性条件下对噪声信号的识别和分类","authors":"A. V. Akhi","doi":"10.1134/S1063771023600298","DOIUrl":null,"url":null,"abstract":"<div><p>The ability of the dolphin auditory system to recognize and classify noise signals according to certain invariant characteristics under the influence of noise interference and in conditions of spatial uncertainty of the simultaneous presentation of positive and negative signals was investigated. Bottlenose dolphins trained to differentiate such signals had to solve this problem in conditions simulating real sea conditions, when the perception of a useful noise signal occurs against a background of similar signals and against a noise interference background. First, noise signals were sequentially presented to the animal against a background of white masking noise. Subsequently, the dolphin had to identify a signal of a positive class from several simultaneously sounding sound sources. The animal’s performance was assessed at several specified noise interference levels. In this case, the actual noise interference was both white noise and simultaneously sounding negative signals. It has been shown that the efficiency and noise immunity of the dolphin’s auditory system depends on the degree of alternativeness of the spatial uncertainty of the simultaneous presentation of signals.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 3","pages":"578 - 585"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition and Classification of Noise Signals by Dolphins (Tursiops truncatus) Under Conditions of Noise Interference and Spatial Uncertainty of Their Simultaneous Presentation\",\"authors\":\"A. V. Akhi\",\"doi\":\"10.1134/S1063771023600298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ability of the dolphin auditory system to recognize and classify noise signals according to certain invariant characteristics under the influence of noise interference and in conditions of spatial uncertainty of the simultaneous presentation of positive and negative signals was investigated. Bottlenose dolphins trained to differentiate such signals had to solve this problem in conditions simulating real sea conditions, when the perception of a useful noise signal occurs against a background of similar signals and against a noise interference background. First, noise signals were sequentially presented to the animal against a background of white masking noise. Subsequently, the dolphin had to identify a signal of a positive class from several simultaneously sounding sound sources. The animal’s performance was assessed at several specified noise interference levels. In this case, the actual noise interference was both white noise and simultaneously sounding negative signals. It has been shown that the efficiency and noise immunity of the dolphin’s auditory system depends on the degree of alternativeness of the spatial uncertainty of the simultaneous presentation of signals.</p></div>\",\"PeriodicalId\":455,\"journal\":{\"name\":\"Acoustical Physics\",\"volume\":\"70 3\",\"pages\":\"578 - 585\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063771023600298\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023600298","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Recognition and Classification of Noise Signals by Dolphins (Tursiops truncatus) Under Conditions of Noise Interference and Spatial Uncertainty of Their Simultaneous Presentation
The ability of the dolphin auditory system to recognize and classify noise signals according to certain invariant characteristics under the influence of noise interference and in conditions of spatial uncertainty of the simultaneous presentation of positive and negative signals was investigated. Bottlenose dolphins trained to differentiate such signals had to solve this problem in conditions simulating real sea conditions, when the perception of a useful noise signal occurs against a background of similar signals and against a noise interference background. First, noise signals were sequentially presented to the animal against a background of white masking noise. Subsequently, the dolphin had to identify a signal of a positive class from several simultaneously sounding sound sources. The animal’s performance was assessed at several specified noise interference levels. In this case, the actual noise interference was both white noise and simultaneously sounding negative signals. It has been shown that the efficiency and noise immunity of the dolphin’s auditory system depends on the degree of alternativeness of the spatial uncertainty of the simultaneous presentation of signals.
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.