PC-SRIF:用于视觉辅助惯性导航的基于 Cholesky 的预条件平方根信息滤波器

Tong Ke, Parth Agrawal, Yun Zhang, Weikun Zhen, Chao X. Guo, Toby Sharp, Ryan C. Dutoit
{"title":"PC-SRIF:用于视觉辅助惯性导航的基于 Cholesky 的预条件平方根信息滤波器","authors":"Tong Ke, Parth Agrawal, Yun Zhang, Weikun Zhen, Chao X. Guo, Toby Sharp, Ryan C. Dutoit","doi":"arxiv-2409.11372","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel estimator for vision-aided inertial\nnavigation systems (VINS), the Preconditioned Cholesky-based Square Root\nInformation Filter (PC-SRIF). When solving linear systems, employing Cholesky\ndecomposition offers superior efficiency but can compromise numerical\nstability. Due to this, existing VINS utilizing (Square Root) Information\nFilters often opt for QR decomposition on platforms where single precision is\npreferred, avoiding the numerical challenges associated with Cholesky\ndecomposition. While these issues are often attributed to the ill-conditioned\ninformation matrix in VINS, our analysis reveals that this is not an inherent\nproperty of VINS but rather a consequence of specific parameterizations. We\nidentify several factors that contribute to an ill-conditioned information\nmatrix and propose a preconditioning technique to mitigate these conditioning\nissues. Building on this analysis, we present PC-SRIF, which exhibits\nremarkable stability in performing Cholesky decomposition in single precision\nwhen solving linear systems in VINS. Consequently, PC-SRIF achieves superior\ntheoretical efficiency compared to alternative estimators. To validate the\nefficiency advantages and numerical stability of PC-SRIF based VINS, we have\nconducted well controlled experiments, which provide empirical evidence in\nsupport of our theoretical findings. Remarkably, in our VINS implementation,\nPC-SRIF's runtime is 41% faster than QR-based SRIF.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PC-SRIF: Preconditioned Cholesky-based Square Root Information Filter for Vision-aided Inertial Navigation\",\"authors\":\"Tong Ke, Parth Agrawal, Yun Zhang, Weikun Zhen, Chao X. Guo, Toby Sharp, Ryan C. Dutoit\",\"doi\":\"arxiv-2409.11372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel estimator for vision-aided inertial\\nnavigation systems (VINS), the Preconditioned Cholesky-based Square Root\\nInformation Filter (PC-SRIF). When solving linear systems, employing Cholesky\\ndecomposition offers superior efficiency but can compromise numerical\\nstability. Due to this, existing VINS utilizing (Square Root) Information\\nFilters often opt for QR decomposition on platforms where single precision is\\npreferred, avoiding the numerical challenges associated with Cholesky\\ndecomposition. While these issues are often attributed to the ill-conditioned\\ninformation matrix in VINS, our analysis reveals that this is not an inherent\\nproperty of VINS but rather a consequence of specific parameterizations. We\\nidentify several factors that contribute to an ill-conditioned information\\nmatrix and propose a preconditioning technique to mitigate these conditioning\\nissues. Building on this analysis, we present PC-SRIF, which exhibits\\nremarkable stability in performing Cholesky decomposition in single precision\\nwhen solving linear systems in VINS. Consequently, PC-SRIF achieves superior\\ntheoretical efficiency compared to alternative estimators. To validate the\\nefficiency advantages and numerical stability of PC-SRIF based VINS, we have\\nconducted well controlled experiments, which provide empirical evidence in\\nsupport of our theoretical findings. Remarkably, in our VINS implementation,\\nPC-SRIF's runtime is 41% faster than QR-based SRIF.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于视觉辅助惯性导航系统(VINS)的新型估计器--基于 Cholesky 的预条件平方根信息滤波器(PC-SRIF)。在求解线性系统时,采用 Cholesky分解能提供更高的效率,但会影响数值稳定性。有鉴于此,现有的利用(平方根)信息滤波器的 VINS 通常会在偏好单精度的平台上选择 QR 分解,以避免与 Cholesky 分解相关的数值挑战。虽然这些问题通常归因于 VINS 中的信息矩阵条件不良,但我们的分析表明,这并不是 VINS 的固有属性,而是特定参数化的结果。我们确定了导致信息矩阵条件不良的几个因素,并提出了一种预处理技术来缓解这些条件不良问题。在这一分析的基础上,我们提出了 PC-SRIF,它在求解 VINS 线性系统时以单精度执行 Cholesky 分解,表现出显著的稳定性。因此,与其他估计器相比,PC-SRIF 实现了超高的理论效率。为了验证基于 PC-SRIF 的 VINS 的效率优势和数值稳定性,我们进行了严格控制的实验,为我们的理论发现提供了实证支持。值得注意的是,在我们的 VINS 实现中,PC-SRIF 的运行时间比基于 QR 的 SRIF 快 41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PC-SRIF: Preconditioned Cholesky-based Square Root Information Filter for Vision-aided Inertial Navigation
In this paper, we introduce a novel estimator for vision-aided inertial navigation systems (VINS), the Preconditioned Cholesky-based Square Root Information Filter (PC-SRIF). When solving linear systems, employing Cholesky decomposition offers superior efficiency but can compromise numerical stability. Due to this, existing VINS utilizing (Square Root) Information Filters often opt for QR decomposition on platforms where single precision is preferred, avoiding the numerical challenges associated with Cholesky decomposition. While these issues are often attributed to the ill-conditioned information matrix in VINS, our analysis reveals that this is not an inherent property of VINS but rather a consequence of specific parameterizations. We identify several factors that contribute to an ill-conditioned information matrix and propose a preconditioning technique to mitigate these conditioning issues. Building on this analysis, we present PC-SRIF, which exhibits remarkable stability in performing Cholesky decomposition in single precision when solving linear systems in VINS. Consequently, PC-SRIF achieves superior theoretical efficiency compared to alternative estimators. To validate the efficiency advantages and numerical stability of PC-SRIF based VINS, we have conducted well controlled experiments, which provide empirical evidence in support of our theoretical findings. Remarkably, in our VINS implementation, PC-SRIF's runtime is 41% faster than QR-based SRIF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信