开放集语义不确定性感知度量-语义图匹配

Kurran Singh, John J. Leonard
{"title":"开放集语义不确定性感知度量-语义图匹配","authors":"Kurran Singh, John J. Leonard","doi":"arxiv-2409.11555","DOIUrl":null,"url":null,"abstract":"Underwater object-level mapping requires incorporating visual foundation\nmodels to handle the uncommon and often previously unseen object classes\nencountered in marine scenarios. In this work, a metric of semantic uncertainty\nfor open-set object detections produced by visual foundation models is\ncalculated and then incorporated into an object-level uncertainty tracking\nframework. Object-level uncertainties and geometric relationships between\nobjects are used to enable robust object-level loop closure detection for\nunknown object classes. The above loop closure detection problem is formulated\nas a graph-matching problem. While graph matching, in general, is NP-Complete,\na solver for an equivalent formulation of the proposed graph matching problem\nas a graph editing problem is tested on multiple challenging underwater scenes.\nResults for this solver as well as three other solvers demonstrate that the\nproposed methods are feasible for real-time use in marine environments for the\nrobust, open-set, multi-object, semantic-uncertainty-aware loop closure\ndetection. Further experimental results on the KITTI dataset demonstrate that\nthe method generalizes to large-scale terrestrial scenes.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open-Set Semantic Uncertainty Aware Metric-Semantic Graph Matching\",\"authors\":\"Kurran Singh, John J. Leonard\",\"doi\":\"arxiv-2409.11555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater object-level mapping requires incorporating visual foundation\\nmodels to handle the uncommon and often previously unseen object classes\\nencountered in marine scenarios. In this work, a metric of semantic uncertainty\\nfor open-set object detections produced by visual foundation models is\\ncalculated and then incorporated into an object-level uncertainty tracking\\nframework. Object-level uncertainties and geometric relationships between\\nobjects are used to enable robust object-level loop closure detection for\\nunknown object classes. The above loop closure detection problem is formulated\\nas a graph-matching problem. While graph matching, in general, is NP-Complete,\\na solver for an equivalent formulation of the proposed graph matching problem\\nas a graph editing problem is tested on multiple challenging underwater scenes.\\nResults for this solver as well as three other solvers demonstrate that the\\nproposed methods are feasible for real-time use in marine environments for the\\nrobust, open-set, multi-object, semantic-uncertainty-aware loop closure\\ndetection. Further experimental results on the KITTI dataset demonstrate that\\nthe method generalizes to large-scale terrestrial scenes.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水下物体级制图需要结合视觉基础模型,以处理海洋场景中遇到的不常见且经常是以前从未见过的物体类别。在这项工作中,计算了视觉基础模型产生的开放集物体检测的语义不确定性度量,然后将其纳入物体级不确定性跟踪框架。利用对象级不确定性和对象之间的几何关系,可对未知对象类别进行稳健的对象级闭环检测。上述闭环检测问题被表述为图形匹配问题。该求解器和其他三个求解器的结果表明,在海洋环境中实时使用所提出的方法进行稳健、开放集、多对象、语义不确定性感知的闭合回路检测是可行的。在 KITTI 数据集上的进一步实验结果表明,该方法适用于大规模陆地场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Open-Set Semantic Uncertainty Aware Metric-Semantic Graph Matching
Underwater object-level mapping requires incorporating visual foundation models to handle the uncommon and often previously unseen object classes encountered in marine scenarios. In this work, a metric of semantic uncertainty for open-set object detections produced by visual foundation models is calculated and then incorporated into an object-level uncertainty tracking framework. Object-level uncertainties and geometric relationships between objects are used to enable robust object-level loop closure detection for unknown object classes. The above loop closure detection problem is formulated as a graph-matching problem. While graph matching, in general, is NP-Complete, a solver for an equivalent formulation of the proposed graph matching problem as a graph editing problem is tested on multiple challenging underwater scenes. Results for this solver as well as three other solvers demonstrate that the proposed methods are feasible for real-time use in marine environments for the robust, open-set, multi-object, semantic-uncertainty-aware loop closure detection. Further experimental results on the KITTI dataset demonstrate that the method generalizes to large-scale terrestrial scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信