Hyper-SAMARL:基于超图的多机器人系统协调任务分配和社会感知导航

Weizheng Wang, Aniket Bera, Byung-Cheol Min
{"title":"Hyper-SAMARL:基于超图的多机器人系统协调任务分配和社会感知导航","authors":"Weizheng Wang, Aniket Bera, Byung-Cheol Min","doi":"arxiv-2409.11561","DOIUrl":null,"url":null,"abstract":"A team of multiple robots seamlessly and safely working in human-filled\npublic environments requires adaptive task allocation and socially-aware\nnavigation that account for dynamic human behavior. Current approaches struggle\nwith highly dynamic pedestrian movement and the need for flexible task\nallocation. We propose Hyper-SAMARL, a hypergraph-based system for multi-robot\ntask allocation and socially-aware navigation, leveraging multi-agent\nreinforcement learning (MARL). Hyper-SAMARL models the environmental dynamics\nbetween robots, humans, and points of interest (POIs) using a hypergraph,\nenabling adaptive task assignment and socially-compliant navigation through a\nhypergraph diffusion mechanism. Our framework, trained with MARL, effectively\ncaptures interactions between robots and humans, adapting tasks based on\nreal-time changes in human activity. Experimental results demonstrate that\nHyper-SAMARL outperforms baseline models in terms of social navigation, task\ncompletion efficiency, and adaptability in various simulated scenarios.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyper-SAMARL: Hypergraph-based Coordinated Task Allocation and Socially-aware Navigation for Multi-Robot Systems\",\"authors\":\"Weizheng Wang, Aniket Bera, Byung-Cheol Min\",\"doi\":\"arxiv-2409.11561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A team of multiple robots seamlessly and safely working in human-filled\\npublic environments requires adaptive task allocation and socially-aware\\nnavigation that account for dynamic human behavior. Current approaches struggle\\nwith highly dynamic pedestrian movement and the need for flexible task\\nallocation. We propose Hyper-SAMARL, a hypergraph-based system for multi-robot\\ntask allocation and socially-aware navigation, leveraging multi-agent\\nreinforcement learning (MARL). Hyper-SAMARL models the environmental dynamics\\nbetween robots, humans, and points of interest (POIs) using a hypergraph,\\nenabling adaptive task assignment and socially-compliant navigation through a\\nhypergraph diffusion mechanism. Our framework, trained with MARL, effectively\\ncaptures interactions between robots and humans, adapting tasks based on\\nreal-time changes in human activity. Experimental results demonstrate that\\nHyper-SAMARL outperforms baseline models in terms of social navigation, task\\ncompletion efficiency, and adaptability in various simulated scenarios.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个由多个机器人组成的团队要在充满人类的公共环境中安全无缝地工作,需要考虑到人类的动态行为,进行自适应任务分配和社会导航。目前的方法难以应对高度动态的行人运动和灵活的任务分配需求。我们提出了 Hyper-SAMARL,这是一种基于超图的多任务分配和社会感知导航系统,利用了多代理强化学习(MARL)。Hyper-SAMARL利用超图对机器人、人类和兴趣点(POIs)之间的环境动态进行建模,通过超图扩散机制实现自适应任务分配和符合社会需求的导航。我们的框架采用 MARL 训练,能有效捕捉机器人与人类之间的互动,并根据人类活动的实时变化调整任务。实验结果表明,在各种模拟场景中,Hyper-SAMARL 在社交导航、任务完成效率和适应性方面都优于基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyper-SAMARL: Hypergraph-based Coordinated Task Allocation and Socially-aware Navigation for Multi-Robot Systems
A team of multiple robots seamlessly and safely working in human-filled public environments requires adaptive task allocation and socially-aware navigation that account for dynamic human behavior. Current approaches struggle with highly dynamic pedestrian movement and the need for flexible task allocation. We propose Hyper-SAMARL, a hypergraph-based system for multi-robot task allocation and socially-aware navigation, leveraging multi-agent reinforcement learning (MARL). Hyper-SAMARL models the environmental dynamics between robots, humans, and points of interest (POIs) using a hypergraph, enabling adaptive task assignment and socially-compliant navigation through a hypergraph diffusion mechanism. Our framework, trained with MARL, effectively captures interactions between robots and humans, adapting tasks based on real-time changes in human activity. Experimental results demonstrate that Hyper-SAMARL outperforms baseline models in terms of social navigation, task completion efficiency, and adaptability in various simulated scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信