基于超图的运动生成与多模态交互关系推理

Keshu Wu, Yang Zhou, Haotian Shi, Dominique Lord, Bin Ran, Xinyue Ye
{"title":"基于超图的运动生成与多模态交互关系推理","authors":"Keshu Wu, Yang Zhou, Haotian Shi, Dominique Lord, Bin Ran, Xinyue Ye","doi":"arxiv-2409.11676","DOIUrl":null,"url":null,"abstract":"The intricate nature of real-world driving environments, characterized by\ndynamic and diverse interactions among multiple vehicles and their possible\nfuture states, presents considerable challenges in accurately predicting the\nmotion states of vehicles and handling the uncertainty inherent in the\npredictions. Addressing these challenges requires comprehensive modeling and\nreasoning to capture the implicit relations among vehicles and the\ncorresponding diverse behaviors. This research introduces an integrated\nframework for autonomous vehicles (AVs) motion prediction to address these\ncomplexities, utilizing a novel Relational Hypergraph Interaction-informed\nNeural mOtion generator (RHINO). RHINO leverages hypergraph-based relational\nreasoning by integrating a multi-scale hypergraph neural network to model\ngroup-wise interactions among multiple vehicles and their multi-modal driving\nbehaviors, thereby enhancing motion prediction accuracy and reliability.\nExperimental validation using real-world datasets demonstrates the superior\nperformance of this framework in improving predictive accuracy and fostering\nsocially aware automated driving in dynamic traffic scenarios.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypergraph-based Motion Generation with Multi-modal Interaction Relational Reasoning\",\"authors\":\"Keshu Wu, Yang Zhou, Haotian Shi, Dominique Lord, Bin Ran, Xinyue Ye\",\"doi\":\"arxiv-2409.11676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intricate nature of real-world driving environments, characterized by\\ndynamic and diverse interactions among multiple vehicles and their possible\\nfuture states, presents considerable challenges in accurately predicting the\\nmotion states of vehicles and handling the uncertainty inherent in the\\npredictions. Addressing these challenges requires comprehensive modeling and\\nreasoning to capture the implicit relations among vehicles and the\\ncorresponding diverse behaviors. This research introduces an integrated\\nframework for autonomous vehicles (AVs) motion prediction to address these\\ncomplexities, utilizing a novel Relational Hypergraph Interaction-informed\\nNeural mOtion generator (RHINO). RHINO leverages hypergraph-based relational\\nreasoning by integrating a multi-scale hypergraph neural network to model\\ngroup-wise interactions among multiple vehicles and their multi-modal driving\\nbehaviors, thereby enhancing motion prediction accuracy and reliability.\\nExperimental validation using real-world datasets demonstrates the superior\\nperformance of this framework in improving predictive accuracy and fostering\\nsocially aware automated driving in dynamic traffic scenarios.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

真实世界的驾驶环境错综复杂,其特点是多种车辆之间的动态和多样化互动及其可能的未来状态,这给准确预测车辆的运动状态和处理预测中固有的不确定性带来了相当大的挑战。要应对这些挑战,需要进行综合建模和推理,以捕捉车辆之间的隐含关系和相应的各种行为。本研究利用新颖的关系超图交互式神经运算生成器(RHINO),为自动驾驶汽车(AV)运动预测引入了一个综合框架,以解决这些复杂问题。RHINO 通过集成多尺度超图神经网络,利用基于超图的关系推理,对多辆车之间的分组交互及其多模式驾驶行为进行建模,从而提高了运动预测的准确性和可靠性。使用真实世界数据集进行的实验验证证明,该框架在提高预测准确性和促进动态交通场景中的社会意识自动驾驶方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypergraph-based Motion Generation with Multi-modal Interaction Relational Reasoning
The intricate nature of real-world driving environments, characterized by dynamic and diverse interactions among multiple vehicles and their possible future states, presents considerable challenges in accurately predicting the motion states of vehicles and handling the uncertainty inherent in the predictions. Addressing these challenges requires comprehensive modeling and reasoning to capture the implicit relations among vehicles and the corresponding diverse behaviors. This research introduces an integrated framework for autonomous vehicles (AVs) motion prediction to address these complexities, utilizing a novel Relational Hypergraph Interaction-informed Neural mOtion generator (RHINO). RHINO leverages hypergraph-based relational reasoning by integrating a multi-scale hypergraph neural network to model group-wise interactions among multiple vehicles and their multi-modal driving behaviors, thereby enhancing motion prediction accuracy and reliability. Experimental validation using real-world datasets demonstrates the superior performance of this framework in improving predictive accuracy and fostering socially aware automated driving in dynamic traffic scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信