从文字到车轮:为自动驾驶自动生成风格定制的策略

Xu Han, Xianda Chen, Zhenghan Cai, Pinlong Cai, Meixin Zhu, Xiaowen Chu
{"title":"从文字到车轮:为自动驾驶自动生成风格定制的策略","authors":"Xu Han, Xianda Chen, Zhenghan Cai, Pinlong Cai, Meixin Zhu, Xiaowen Chu","doi":"arxiv-2409.11694","DOIUrl":null,"url":null,"abstract":"Autonomous driving technology has witnessed rapid advancements, with\nfoundation models improving interactivity and user experiences. However,\ncurrent autonomous vehicles (AVs) face significant limitations in delivering\ncommand-based driving styles. Most existing methods either rely on predefined\ndriving styles that require expert input or use data-driven techniques like\nInverse Reinforcement Learning to extract styles from driving data. These\napproaches, though effective in some cases, face challenges: difficulty\nobtaining specific driving data for style matching (e.g., in Robotaxis),\ninability to align driving style metrics with user preferences, and limitations\nto pre-existing styles, restricting customization and generalization to new\ncommands. This paper introduces Words2Wheels, a framework that automatically\ngenerates customized driving policies based on natural language user commands.\nWords2Wheels employs a Style-Customized Reward Function to generate a\nStyle-Customized Driving Policy without relying on prior driving data. By\nleveraging large language models and a Driving Style Database, the framework\nefficiently retrieves, adapts, and generalizes driving styles. A Statistical\nEvaluation module ensures alignment with user preferences. Experimental results\ndemonstrate that Words2Wheels outperforms existing methods in accuracy,\ngeneralization, and adaptability, offering a novel solution for customized AV\ndriving behavior. Code and demo available at\nhttps://yokhon.github.io/Words2Wheels/.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Words to Wheels: Automated Style-Customized Policy Generation for Autonomous Driving\",\"authors\":\"Xu Han, Xianda Chen, Zhenghan Cai, Pinlong Cai, Meixin Zhu, Xiaowen Chu\",\"doi\":\"arxiv-2409.11694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous driving technology has witnessed rapid advancements, with\\nfoundation models improving interactivity and user experiences. However,\\ncurrent autonomous vehicles (AVs) face significant limitations in delivering\\ncommand-based driving styles. Most existing methods either rely on predefined\\ndriving styles that require expert input or use data-driven techniques like\\nInverse Reinforcement Learning to extract styles from driving data. These\\napproaches, though effective in some cases, face challenges: difficulty\\nobtaining specific driving data for style matching (e.g., in Robotaxis),\\ninability to align driving style metrics with user preferences, and limitations\\nto pre-existing styles, restricting customization and generalization to new\\ncommands. This paper introduces Words2Wheels, a framework that automatically\\ngenerates customized driving policies based on natural language user commands.\\nWords2Wheels employs a Style-Customized Reward Function to generate a\\nStyle-Customized Driving Policy without relying on prior driving data. By\\nleveraging large language models and a Driving Style Database, the framework\\nefficiently retrieves, adapts, and generalizes driving styles. A Statistical\\nEvaluation module ensures alignment with user preferences. Experimental results\\ndemonstrate that Words2Wheels outperforms existing methods in accuracy,\\ngeneralization, and adaptability, offering a novel solution for customized AV\\ndriving behavior. Code and demo available at\\nhttps://yokhon.github.io/Words2Wheels/.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶技术突飞猛进,基础模型改善了交互性和用户体验。然而,目前的自动驾驶汽车(AV)在提供基于指令的驾驶方式方面面临着很大的局限性。大多数现有方法要么依赖于需要专家输入的预定义驾驶风格,要么使用逆强化学习等数据驱动技术从驾驶数据中提取风格。这些方法虽然在某些情况下行之有效,但也面临着挑战:难以获得特定的驾驶数据进行风格匹配(例如在 Robotaxis 中),无法将驾驶风格指标与用户偏好相匹配,以及仅限于预先存在的风格,从而限制了对新命令的定制和泛化。本文介绍的 Words2Wheels 是一个基于自然语言用户指令自动生成定制驾驶策略的框架。Words2Wheels 采用风格定制奖励函数生成风格定制驾驶策略,而无需依赖先前的驾驶数据。该框架利用大型语言模型和驾驶风格数据库,有效地检索、调整和概括驾驶风格。统计评估模块可确保与用户偏好保持一致。实验结果表明,Words2Wheels 在准确性、概括性和适应性方面均优于现有方法,为定制化的自动驾驶汽车驾驶行为提供了新颖的解决方案。代码和演示可在https://yokhon.github.io/Words2Wheels/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Words to Wheels: Automated Style-Customized Policy Generation for Autonomous Driving
Autonomous driving technology has witnessed rapid advancements, with foundation models improving interactivity and user experiences. However, current autonomous vehicles (AVs) face significant limitations in delivering command-based driving styles. Most existing methods either rely on predefined driving styles that require expert input or use data-driven techniques like Inverse Reinforcement Learning to extract styles from driving data. These approaches, though effective in some cases, face challenges: difficulty obtaining specific driving data for style matching (e.g., in Robotaxis), inability to align driving style metrics with user preferences, and limitations to pre-existing styles, restricting customization and generalization to new commands. This paper introduces Words2Wheels, a framework that automatically generates customized driving policies based on natural language user commands. Words2Wheels employs a Style-Customized Reward Function to generate a Style-Customized Driving Policy without relying on prior driving data. By leveraging large language models and a Driving Style Database, the framework efficiently retrieves, adapts, and generalizes driving styles. A Statistical Evaluation module ensures alignment with user preferences. Experimental results demonstrate that Words2Wheels outperforms existing methods in accuracy, generalization, and adaptability, offering a novel solution for customized AV driving behavior. Code and demo available at https://yokhon.github.io/Words2Wheels/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信