利用机器人的谎言群方向进行强化学习

Martin Schuck, Jan Brüdigam, Sandra Hirche, Angela Schoellig
{"title":"利用机器人的谎言群方向进行强化学习","authors":"Martin Schuck, Jan Brüdigam, Sandra Hirche, Angela Schoellig","doi":"arxiv-2409.11935","DOIUrl":null,"url":null,"abstract":"Handling orientations of robots and objects is a crucial aspect of many\napplications. Yet, ever so often, there is a lack of mathematical correctness\nwhen dealing with orientations, especially in learning pipelines involving, for\nexample, artificial neural networks. In this paper, we investigate\nreinforcement learning with orientations and propose a simple modification of\nthe network's input and output that adheres to the Lie group structure of\norientations. As a result, we obtain an easy and efficient implementation that\nis directly usable with existing learning libraries and achieves significantly\nbetter performance than other common orientation representations. We briefly\nintroduce Lie theory specifically for orientations in robotics to motivate and\noutline our approach. Subsequently, a thorough empirical evaluation of\ndifferent combinations of orientation representations for states and actions\ndemonstrates the superior performance of our proposed approach in different\nscenarios, including: direct orientation control, end effector orientation\ncontrol, and pick-and-place tasks.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning with Lie Group Orientations for Robotics\",\"authors\":\"Martin Schuck, Jan Brüdigam, Sandra Hirche, Angela Schoellig\",\"doi\":\"arxiv-2409.11935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handling orientations of robots and objects is a crucial aspect of many\\napplications. Yet, ever so often, there is a lack of mathematical correctness\\nwhen dealing with orientations, especially in learning pipelines involving, for\\nexample, artificial neural networks. In this paper, we investigate\\nreinforcement learning with orientations and propose a simple modification of\\nthe network's input and output that adheres to the Lie group structure of\\norientations. As a result, we obtain an easy and efficient implementation that\\nis directly usable with existing learning libraries and achieves significantly\\nbetter performance than other common orientation representations. We briefly\\nintroduce Lie theory specifically for orientations in robotics to motivate and\\noutline our approach. Subsequently, a thorough empirical evaluation of\\ndifferent combinations of orientation representations for states and actions\\ndemonstrates the superior performance of our proposed approach in different\\nscenarios, including: direct orientation control, end effector orientation\\ncontrol, and pick-and-place tasks.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

处理机器人和物体的方向是许多应用的一个重要方面。然而,在处理方向问题时,尤其是在涉及人工神经网络的学习管道中,往往缺乏数学正确性。在本文中,我们研究了有方向性的强化学习,并提出了一种简单的网络输入和输出修改方法,以符合方向性的列群结构。因此,我们获得了一种简单高效的实现方法,它可以直接用于现有的学习库,而且性能明显优于其他常见的方向表示方法。我们简要介绍了专门针对机器人定向的李理论,以激励和概述我们的方法。随后,我们对状态和动作的不同方位表示组合进行了全面的实证评估,证明了我们提出的方法在不同场景中的卓越性能,包括:直接方位控制、末端效应器方位控制和拾放任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning with Lie Group Orientations for Robotics
Handling orientations of robots and objects is a crucial aspect of many applications. Yet, ever so often, there is a lack of mathematical correctness when dealing with orientations, especially in learning pipelines involving, for example, artificial neural networks. In this paper, we investigate reinforcement learning with orientations and propose a simple modification of the network's input and output that adheres to the Lie group structure of orientations. As a result, we obtain an easy and efficient implementation that is directly usable with existing learning libraries and achieves significantly better performance than other common orientation representations. We briefly introduce Lie theory specifically for orientations in robotics to motivate and outline our approach. Subsequently, a thorough empirical evaluation of different combinations of orientation representations for states and actions demonstrates the superior performance of our proposed approach in different scenarios, including: direct orientation control, end effector orientation control, and pick-and-place tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信