Mariana Luna, Silvia Pereira, Carlos Saboya, Andrea Ramalho
{"title":"身体脂肪指数与鲁氏胃旁路术后 6 个月逆转代谢不健康肥胖的关系","authors":"Mariana Luna, Silvia Pereira, Carlos Saboya, Andrea Ramalho","doi":"10.3390/metabo14090502","DOIUrl":null,"url":null,"abstract":"The factors determining the reversal of metabolically unhealthy obesity (MUO) to metabolically healthy obesity (MHO) after Roux-en-Y gastric bypass (RYGB) are not completely elucidated. The present study aims to evaluate body adiposity and distribution, through different indices, according to metabolic phenotypes before and 6 months after RYGB, and the relationship between these indices and transition from MUO to MHO. This study reports a prospective longitudinal study on adults with obesity who were evaluated before (T0) and 6 months (T1) after RYGB. Bodyweight, height, waist circumference (WC), BMI, waist-to-height ratio (WHR), total cholesterol (TC), HDL-c, LDL-c, triglycerides, insulin, glucose, HbA1c and HOMA-IR were evaluated. The visceral adiposity index (VAI), the conicity index (CI), the lipid accumulation product (LAP), CUN-BAE and body shape index (ABSI) were calculated. MUO was classified based on insulin resistance. MUO at T0 with transition to MHO at T1 formed the MHO-t group MHO and MUO at both T0 and T1 formed the MHO-m and MUO-m groups, respectively. At T0, 37.3% of the 62 individuals were classified as MHO and 62.7% as MUO. Individuals in the MUO-T0 group had higher blood glucose, HbA1c, HOMA-IR, insulin, TC and LDL-c compared to those in the MHO-T0 group. Both groups showed significant improvement in biochemical and body variables at T1. After RYGB, 89.2% of MUO-T0 became MHO (MHO-t). The MUO-m group presented higher HOMA-IR, insulin and VAI, compared to the MHO-m and MHO-t groups. CI and ABSI at T0 correlated with HOMA-IR at T1 in the MHO-t and MHO-m groups. CI and ABSI, indicators of visceral fat, are promising for predicting post-RYGB metabolic improvement. Additional studies are needed to confirm the sustainability of MUO reversion and its relationship with these indices.","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"16 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship between Body Adiposity Indices and Reversal of Metabolically Unhealthy Obesity 6 Months after Roux-en-Y Gastric Bypass\",\"authors\":\"Mariana Luna, Silvia Pereira, Carlos Saboya, Andrea Ramalho\",\"doi\":\"10.3390/metabo14090502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The factors determining the reversal of metabolically unhealthy obesity (MUO) to metabolically healthy obesity (MHO) after Roux-en-Y gastric bypass (RYGB) are not completely elucidated. The present study aims to evaluate body adiposity and distribution, through different indices, according to metabolic phenotypes before and 6 months after RYGB, and the relationship between these indices and transition from MUO to MHO. This study reports a prospective longitudinal study on adults with obesity who were evaluated before (T0) and 6 months (T1) after RYGB. Bodyweight, height, waist circumference (WC), BMI, waist-to-height ratio (WHR), total cholesterol (TC), HDL-c, LDL-c, triglycerides, insulin, glucose, HbA1c and HOMA-IR were evaluated. The visceral adiposity index (VAI), the conicity index (CI), the lipid accumulation product (LAP), CUN-BAE and body shape index (ABSI) were calculated. MUO was classified based on insulin resistance. MUO at T0 with transition to MHO at T1 formed the MHO-t group MHO and MUO at both T0 and T1 formed the MHO-m and MUO-m groups, respectively. At T0, 37.3% of the 62 individuals were classified as MHO and 62.7% as MUO. Individuals in the MUO-T0 group had higher blood glucose, HbA1c, HOMA-IR, insulin, TC and LDL-c compared to those in the MHO-T0 group. Both groups showed significant improvement in biochemical and body variables at T1. After RYGB, 89.2% of MUO-T0 became MHO (MHO-t). The MUO-m group presented higher HOMA-IR, insulin and VAI, compared to the MHO-m and MHO-t groups. CI and ABSI at T0 correlated with HOMA-IR at T1 in the MHO-t and MHO-m groups. CI and ABSI, indicators of visceral fat, are promising for predicting post-RYGB metabolic improvement. Additional studies are needed to confirm the sustainability of MUO reversion and its relationship with these indices.\",\"PeriodicalId\":18496,\"journal\":{\"name\":\"Metabolites\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolites\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/metabo14090502\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo14090502","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Relationship between Body Adiposity Indices and Reversal of Metabolically Unhealthy Obesity 6 Months after Roux-en-Y Gastric Bypass
The factors determining the reversal of metabolically unhealthy obesity (MUO) to metabolically healthy obesity (MHO) after Roux-en-Y gastric bypass (RYGB) are not completely elucidated. The present study aims to evaluate body adiposity and distribution, through different indices, according to metabolic phenotypes before and 6 months after RYGB, and the relationship between these indices and transition from MUO to MHO. This study reports a prospective longitudinal study on adults with obesity who were evaluated before (T0) and 6 months (T1) after RYGB. Bodyweight, height, waist circumference (WC), BMI, waist-to-height ratio (WHR), total cholesterol (TC), HDL-c, LDL-c, triglycerides, insulin, glucose, HbA1c and HOMA-IR were evaluated. The visceral adiposity index (VAI), the conicity index (CI), the lipid accumulation product (LAP), CUN-BAE and body shape index (ABSI) were calculated. MUO was classified based on insulin resistance. MUO at T0 with transition to MHO at T1 formed the MHO-t group MHO and MUO at both T0 and T1 formed the MHO-m and MUO-m groups, respectively. At T0, 37.3% of the 62 individuals were classified as MHO and 62.7% as MUO. Individuals in the MUO-T0 group had higher blood glucose, HbA1c, HOMA-IR, insulin, TC and LDL-c compared to those in the MHO-T0 group. Both groups showed significant improvement in biochemical and body variables at T1. After RYGB, 89.2% of MUO-T0 became MHO (MHO-t). The MUO-m group presented higher HOMA-IR, insulin and VAI, compared to the MHO-m and MHO-t groups. CI and ABSI at T0 correlated with HOMA-IR at T1 in the MHO-t and MHO-m groups. CI and ABSI, indicators of visceral fat, are promising for predicting post-RYGB metabolic improvement. Additional studies are needed to confirm the sustainability of MUO reversion and its relationship with these indices.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.