基于规范的脆性承载力模型用于规范前 RC 建筑的抗震评估:比较及对改造的影响

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Santa Anna Scala, Maria Teresa De Risi, Gerardo Mario Verderame
{"title":"基于规范的脆性承载力模型用于规范前 RC 建筑的抗震评估:比较及对改造的影响","authors":"Santa Anna Scala,&nbsp;Maria Teresa De Risi,&nbsp;Gerardo Mario Verderame","doi":"10.1007/s10518-024-02016-6","DOIUrl":null,"url":null,"abstract":"<div><p>The existing Reinforced Concrete (RC) buildings stock is often characterized by a significant seismic vulnerability, due to the absence of capacity design principles, even in regions with high seismic hazard, such as Italy. Approximately 67% of existing RC buildings in Italy have been designed without considering seismic actions (GLD), resulting in very low transverse reinforcement amount in beams and, particularly, in columns. Additionally, beam-column joints typically totally lack stirrups. Consequently, shear failures under seismic actions are very likely for this pre-code building typology, often limiting their seismic capacity. However, the assessment of shear failures in beams/columns or joints varies significantly from code to code worldwide. The main goal of this work is to quantify the impact of different code-based brittle capacity models on the seismic capacity assessment and retrofit, focusing on GLD Italian pre-1970 RC buildings. This comparative analysis is carried out by first considering three current codes, emphasizing their, even significant, differences: European (EN 1998-3-1. 2005), Italian (D.M. 2018), and American (ASCE SEI/41 2017) standards. Then, shear capacity models prescribed by the current drafts of the next generation of Eurocodes are implemented and compared to the current models. The assessment includes: (<i>i</i>) a parametric comparison among models; (<i>ii</i>) the evaluation of case-study buildings capacity in their as-built condition and after shear strengthening interventions. The latter is performed on 3D “bare” models, due to the lack of practical guidance in most codes on modelling masonry infills.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6643 - 6674"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-02016-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Code-based brittle capacity models for seismic assessment of pre-code RC buildings: comparison and consequences on retrofit\",\"authors\":\"Santa Anna Scala,&nbsp;Maria Teresa De Risi,&nbsp;Gerardo Mario Verderame\",\"doi\":\"10.1007/s10518-024-02016-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The existing Reinforced Concrete (RC) buildings stock is often characterized by a significant seismic vulnerability, due to the absence of capacity design principles, even in regions with high seismic hazard, such as Italy. Approximately 67% of existing RC buildings in Italy have been designed without considering seismic actions (GLD), resulting in very low transverse reinforcement amount in beams and, particularly, in columns. Additionally, beam-column joints typically totally lack stirrups. Consequently, shear failures under seismic actions are very likely for this pre-code building typology, often limiting their seismic capacity. However, the assessment of shear failures in beams/columns or joints varies significantly from code to code worldwide. The main goal of this work is to quantify the impact of different code-based brittle capacity models on the seismic capacity assessment and retrofit, focusing on GLD Italian pre-1970 RC buildings. This comparative analysis is carried out by first considering three current codes, emphasizing their, even significant, differences: European (EN 1998-3-1. 2005), Italian (D.M. 2018), and American (ASCE SEI/41 2017) standards. Then, shear capacity models prescribed by the current drafts of the next generation of Eurocodes are implemented and compared to the current models. The assessment includes: (<i>i</i>) a parametric comparison among models; (<i>ii</i>) the evaluation of case-study buildings capacity in their as-built condition and after shear strengthening interventions. The latter is performed on 3D “bare” models, due to the lack of practical guidance in most codes on modelling masonry infills.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 13\",\"pages\":\"6643 - 6674\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10518-024-02016-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-02016-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-02016-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

现有的钢筋混凝土(RC)建筑通常具有明显的抗震脆弱性,这是因为缺乏承载力设计原则,即使在意大利等地震高发地区也是如此。意大利约有 67% 的现有 RC 建筑在设计时没有考虑地震作用 (GLD),导致梁,尤其是柱的横向配筋量非常低。此外,梁柱连接处通常完全没有箍筋。因此,在地震作用下,这种前规范建筑类型很可能发生剪切破坏,从而限制了其抗震能力。然而,世界范围内不同规范对梁/柱或连接处剪切破坏的评估存在很大差异。这项工作的主要目标是量化基于不同规范的脆性承载力模型对抗震能力评估和改造的影响,重点关注 GLD 意大利 1970 年以前的 RC 建筑。在进行比较分析时,我们首先考虑了三种现行规范,并强调了它们之间的差异,甚至是显著差异:欧洲标准(EN 1998-3-1. 2005)、意大利标准(D.M. 2018)和美国标准(ASCE SEI/41 2017)。然后,实施下一代欧洲规范当前草案规定的剪切承载力模型,并与当前模型进行比较。评估包括(i) 模型之间的参数比较;(ii) 评估案例研究建筑在竣工状态和剪力加固干预后的承载力。后者是在三维 "裸 "模型上进行的,因为大多数规范都缺乏对砌体填充物建模的实际指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Code-based brittle capacity models for seismic assessment of pre-code RC buildings: comparison and consequences on retrofit

Code-based brittle capacity models for seismic assessment of pre-code RC buildings: comparison and consequences on retrofit

The existing Reinforced Concrete (RC) buildings stock is often characterized by a significant seismic vulnerability, due to the absence of capacity design principles, even in regions with high seismic hazard, such as Italy. Approximately 67% of existing RC buildings in Italy have been designed without considering seismic actions (GLD), resulting in very low transverse reinforcement amount in beams and, particularly, in columns. Additionally, beam-column joints typically totally lack stirrups. Consequently, shear failures under seismic actions are very likely for this pre-code building typology, often limiting their seismic capacity. However, the assessment of shear failures in beams/columns or joints varies significantly from code to code worldwide. The main goal of this work is to quantify the impact of different code-based brittle capacity models on the seismic capacity assessment and retrofit, focusing on GLD Italian pre-1970 RC buildings. This comparative analysis is carried out by first considering three current codes, emphasizing their, even significant, differences: European (EN 1998-3-1. 2005), Italian (D.M. 2018), and American (ASCE SEI/41 2017) standards. Then, shear capacity models prescribed by the current drafts of the next generation of Eurocodes are implemented and compared to the current models. The assessment includes: (i) a parametric comparison among models; (ii) the evaluation of case-study buildings capacity in their as-built condition and after shear strengthening interventions. The latter is performed on 3D “bare” models, due to the lack of practical guidance in most codes on modelling masonry infills.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信