{"title":"飞秒激光灯丝等离子体诱导的自播空气激光器的空间分布","authors":"Tao Zeng, Nan Li, Yuliang Yi","doi":"10.1017/s0022377824000783","DOIUrl":null,"url":null,"abstract":"The femtosecond laser filament-induced air laser plays a significant role for the remote sensing of air pollutants. The spatial distributions of air laser intensity were investigated experimentally in previous studies. However, the mechanism of the air laser propagation properties inside the filament plasma has not been quite clear yet. Moreover, few studies have been dedicated to the reproduction of the air laser profile from nitrogen molecules propagating in the filament plasma based on the numerical simulation method. In this study, the lasing action of the air laser from the transition of the first negative (0,0) band of nitrogen ions at 391 nm was simulated during the femtosecond laser filamentation. The beam profile of the air laser changes from a Gaussian or super-Gaussian shape to an outer ring structure by increasing the filament length or nitrogen ion density, which is in accord with the previous experimental result. A multiple-diffraction effect has been proposed to clarify the mechanism of the outer rings beam pattern formation, which is induced by the dynamical interaction between the lasing effect and diffraction effect of the air laser propagating inside the filament plasma. In addition, the amplified air laser power as a function of both the filament length and nitrogen ion density was investigated. Our study would pave the way to improve the energy conversion efficiency and directivity of remote air lasers, which would be significant for remote sensing applications.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial distribution of self-seeded air lasers induced by the femtosecond laser filament plasma\",\"authors\":\"Tao Zeng, Nan Li, Yuliang Yi\",\"doi\":\"10.1017/s0022377824000783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The femtosecond laser filament-induced air laser plays a significant role for the remote sensing of air pollutants. The spatial distributions of air laser intensity were investigated experimentally in previous studies. However, the mechanism of the air laser propagation properties inside the filament plasma has not been quite clear yet. Moreover, few studies have been dedicated to the reproduction of the air laser profile from nitrogen molecules propagating in the filament plasma based on the numerical simulation method. In this study, the lasing action of the air laser from the transition of the first negative (0,0) band of nitrogen ions at 391 nm was simulated during the femtosecond laser filamentation. The beam profile of the air laser changes from a Gaussian or super-Gaussian shape to an outer ring structure by increasing the filament length or nitrogen ion density, which is in accord with the previous experimental result. A multiple-diffraction effect has been proposed to clarify the mechanism of the outer rings beam pattern formation, which is induced by the dynamical interaction between the lasing effect and diffraction effect of the air laser propagating inside the filament plasma. In addition, the amplified air laser power as a function of both the filament length and nitrogen ion density was investigated. Our study would pave the way to improve the energy conversion efficiency and directivity of remote air lasers, which would be significant for remote sensing applications.\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0022377824000783\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000783","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Spatial distribution of self-seeded air lasers induced by the femtosecond laser filament plasma
The femtosecond laser filament-induced air laser plays a significant role for the remote sensing of air pollutants. The spatial distributions of air laser intensity were investigated experimentally in previous studies. However, the mechanism of the air laser propagation properties inside the filament plasma has not been quite clear yet. Moreover, few studies have been dedicated to the reproduction of the air laser profile from nitrogen molecules propagating in the filament plasma based on the numerical simulation method. In this study, the lasing action of the air laser from the transition of the first negative (0,0) band of nitrogen ions at 391 nm was simulated during the femtosecond laser filamentation. The beam profile of the air laser changes from a Gaussian or super-Gaussian shape to an outer ring structure by increasing the filament length or nitrogen ion density, which is in accord with the previous experimental result. A multiple-diffraction effect has been proposed to clarify the mechanism of the outer rings beam pattern formation, which is induced by the dynamical interaction between the lasing effect and diffraction effect of the air laser propagating inside the filament plasma. In addition, the amplified air laser power as a function of both the filament length and nitrogen ion density was investigated. Our study would pave the way to improve the energy conversion efficiency and directivity of remote air lasers, which would be significant for remote sensing applications.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.