{"title":"用于求解弗拉索夫-麦克斯韦方程的量化张量网络","authors":"Erika Ye, Nuno F. Loureiro","doi":"10.1017/s0022377824000503","DOIUrl":null,"url":null,"abstract":"The Vlasov–Maxwell equations provide an <jats:italic>ab initio</jats:italic> description of collisionless plasmas, but solving them is often impractical because of the wide range of spatial and temporal scales that must be resolved and the high dimensionality of the problem. In this work, we present a quantum-inspired semi-implicit Vlasov–Maxwell solver that uses the quantized tensor network (QTN) framework. With this QTN solver, the cost of grid-based numerical simulation of size <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline1.png\"/> </jats:alternatives> </jats:inline-formula> is reduced from <jats:inline-formula> <jats:alternatives> <jats:tex-math>$O(N)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline2.png\"/> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$O(\\text {poly}(D))$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline3.png\"/> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline4.png\"/> </jats:alternatives> </jats:inline-formula> is the ‘rank’ or ‘bond dimension’ of the QTN and is typically set to be much smaller than <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline5.png\"/> </jats:alternatives> </jats:inline-formula>. We find that for the five-dimensional test problems considered here, a modest <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D=64$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline6.png\"/> </jats:alternatives> </jats:inline-formula> appears to be sufficient for capturing the expected physics despite the simulations using a total of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N=2^{36}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline7.png\"/> </jats:alternatives> </jats:inline-formula> grid points, which would require <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D=2^{18}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline8.png\"/> </jats:alternatives> </jats:inline-formula> for full-rank calculations. Additionally, we observe that a QTN time evolution scheme based on the Dirac–Frenkel variational principle allows one to use somewhat larger time steps than prescribed by the Courant–Friedrichs–Lewy constraint. As such, this work demonstrates that the QTN format is a promising means of approximately solving the Vlasov–Maxwell equations with significantly reduced cost.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantized tensor networks for solving the Vlasov–Maxwell equations\",\"authors\":\"Erika Ye, Nuno F. Loureiro\",\"doi\":\"10.1017/s0022377824000503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Vlasov–Maxwell equations provide an <jats:italic>ab initio</jats:italic> description of collisionless plasmas, but solving them is often impractical because of the wide range of spatial and temporal scales that must be resolved and the high dimensionality of the problem. In this work, we present a quantum-inspired semi-implicit Vlasov–Maxwell solver that uses the quantized tensor network (QTN) framework. With this QTN solver, the cost of grid-based numerical simulation of size <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline1.png\\\"/> </jats:alternatives> </jats:inline-formula> is reduced from <jats:inline-formula> <jats:alternatives> <jats:tex-math>$O(N)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline2.png\\\"/> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$O(\\\\text {poly}(D))$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline3.png\\\"/> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline4.png\\\"/> </jats:alternatives> </jats:inline-formula> is the ‘rank’ or ‘bond dimension’ of the QTN and is typically set to be much smaller than <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline5.png\\\"/> </jats:alternatives> </jats:inline-formula>. We find that for the five-dimensional test problems considered here, a modest <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D=64$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline6.png\\\"/> </jats:alternatives> </jats:inline-formula> appears to be sufficient for capturing the expected physics despite the simulations using a total of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N=2^{36}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline7.png\\\"/> </jats:alternatives> </jats:inline-formula> grid points, which would require <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D=2^{18}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline8.png\\\"/> </jats:alternatives> </jats:inline-formula> for full-rank calculations. Additionally, we observe that a QTN time evolution scheme based on the Dirac–Frenkel variational principle allows one to use somewhat larger time steps than prescribed by the Courant–Friedrichs–Lewy constraint. As such, this work demonstrates that the QTN format is a promising means of approximately solving the Vlasov–Maxwell equations with significantly reduced cost.\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0022377824000503\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000503","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Quantized tensor networks for solving the Vlasov–Maxwell equations
The Vlasov–Maxwell equations provide an ab initio description of collisionless plasmas, but solving them is often impractical because of the wide range of spatial and temporal scales that must be resolved and the high dimensionality of the problem. In this work, we present a quantum-inspired semi-implicit Vlasov–Maxwell solver that uses the quantized tensor network (QTN) framework. With this QTN solver, the cost of grid-based numerical simulation of size $N$ is reduced from $O(N)$ to $O(\text {poly}(D))$, where $D$ is the ‘rank’ or ‘bond dimension’ of the QTN and is typically set to be much smaller than $N$. We find that for the five-dimensional test problems considered here, a modest $D=64$ appears to be sufficient for capturing the expected physics despite the simulations using a total of $N=2^{36}$ grid points, which would require $D=2^{18}$ for full-rank calculations. Additionally, we observe that a QTN time evolution scheme based on the Dirac–Frenkel variational principle allows one to use somewhat larger time steps than prescribed by the Courant–Friedrichs–Lewy constraint. As such, this work demonstrates that the QTN format is a promising means of approximately solving the Vlasov–Maxwell equations with significantly reduced cost.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.