用于求解弗拉索夫-麦克斯韦方程的量化张量网络

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Erika Ye, Nuno F. Loureiro
{"title":"用于求解弗拉索夫-麦克斯韦方程的量化张量网络","authors":"Erika Ye, Nuno F. Loureiro","doi":"10.1017/s0022377824000503","DOIUrl":null,"url":null,"abstract":"The Vlasov–Maxwell equations provide an <jats:italic>ab initio</jats:italic> description of collisionless plasmas, but solving them is often impractical because of the wide range of spatial and temporal scales that must be resolved and the high dimensionality of the problem. In this work, we present a quantum-inspired semi-implicit Vlasov–Maxwell solver that uses the quantized tensor network (QTN) framework. With this QTN solver, the cost of grid-based numerical simulation of size <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline1.png\"/> </jats:alternatives> </jats:inline-formula> is reduced from <jats:inline-formula> <jats:alternatives> <jats:tex-math>$O(N)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline2.png\"/> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$O(\\text {poly}(D))$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline3.png\"/> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline4.png\"/> </jats:alternatives> </jats:inline-formula> is the ‘rank’ or ‘bond dimension’ of the QTN and is typically set to be much smaller than <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline5.png\"/> </jats:alternatives> </jats:inline-formula>. We find that for the five-dimensional test problems considered here, a modest <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D=64$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline6.png\"/> </jats:alternatives> </jats:inline-formula> appears to be sufficient for capturing the expected physics despite the simulations using a total of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N=2^{36}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline7.png\"/> </jats:alternatives> </jats:inline-formula> grid points, which would require <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D=2^{18}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000503_inline8.png\"/> </jats:alternatives> </jats:inline-formula> for full-rank calculations. Additionally, we observe that a QTN time evolution scheme based on the Dirac–Frenkel variational principle allows one to use somewhat larger time steps than prescribed by the Courant–Friedrichs–Lewy constraint. As such, this work demonstrates that the QTN format is a promising means of approximately solving the Vlasov–Maxwell equations with significantly reduced cost.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantized tensor networks for solving the Vlasov–Maxwell equations\",\"authors\":\"Erika Ye, Nuno F. Loureiro\",\"doi\":\"10.1017/s0022377824000503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Vlasov–Maxwell equations provide an <jats:italic>ab initio</jats:italic> description of collisionless plasmas, but solving them is often impractical because of the wide range of spatial and temporal scales that must be resolved and the high dimensionality of the problem. In this work, we present a quantum-inspired semi-implicit Vlasov–Maxwell solver that uses the quantized tensor network (QTN) framework. With this QTN solver, the cost of grid-based numerical simulation of size <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline1.png\\\"/> </jats:alternatives> </jats:inline-formula> is reduced from <jats:inline-formula> <jats:alternatives> <jats:tex-math>$O(N)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline2.png\\\"/> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$O(\\\\text {poly}(D))$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline3.png\\\"/> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline4.png\\\"/> </jats:alternatives> </jats:inline-formula> is the ‘rank’ or ‘bond dimension’ of the QTN and is typically set to be much smaller than <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline5.png\\\"/> </jats:alternatives> </jats:inline-formula>. We find that for the five-dimensional test problems considered here, a modest <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D=64$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline6.png\\\"/> </jats:alternatives> </jats:inline-formula> appears to be sufficient for capturing the expected physics despite the simulations using a total of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$N=2^{36}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline7.png\\\"/> </jats:alternatives> </jats:inline-formula> grid points, which would require <jats:inline-formula> <jats:alternatives> <jats:tex-math>$D=2^{18}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000503_inline8.png\\\"/> </jats:alternatives> </jats:inline-formula> for full-rank calculations. Additionally, we observe that a QTN time evolution scheme based on the Dirac–Frenkel variational principle allows one to use somewhat larger time steps than prescribed by the Courant–Friedrichs–Lewy constraint. As such, this work demonstrates that the QTN format is a promising means of approximately solving the Vlasov–Maxwell equations with significantly reduced cost.\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0022377824000503\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000503","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

弗拉索夫-麦克斯韦方程提供了对无碰撞等离子体的初始描述,但由于必须解决的空间和时间尺度范围很广,而且问题的维度很高,因此求解这些方程往往不切实际。在这项工作中,我们提出了一种量子启发的半隐式 Vlasov-Maxwell 求解器,它使用了量子化张量网络(QTN)框架。有了这个 QTN 求解器,基于网格的数值模拟成本从 $O(N)$ 降至 $O(\text {poly}(D))$ ,其中 $D$ 是 QTN 的 "秩 "或 "键维",通常设置为远小于 $N$。我们发现,对于本文考虑的五维测试问题,尽管模拟总共使用了 $N=2^{36}$ 网格点,但适度的 $D=64$ 似乎足以捕捉到预期的物理现象,而全阶计算则需要 $D=2^{18}$。此外,我们还观察到,基于狄拉克-弗伦克尔变分原理的 QTN 时间演化方案允许我们使用比 Courant-Friedrichs-Lewy 约束所规定的更大的时间步长。因此,这项研究表明,QTN 格式是以显著降低的成本近似求解 Vlasov-Maxwell 方程的一种可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantized tensor networks for solving the Vlasov–Maxwell equations
The Vlasov–Maxwell equations provide an ab initio description of collisionless plasmas, but solving them is often impractical because of the wide range of spatial and temporal scales that must be resolved and the high dimensionality of the problem. In this work, we present a quantum-inspired semi-implicit Vlasov–Maxwell solver that uses the quantized tensor network (QTN) framework. With this QTN solver, the cost of grid-based numerical simulation of size $N$ is reduced from $O(N)$ to $O(\text {poly}(D))$ , where $D$ is the ‘rank’ or ‘bond dimension’ of the QTN and is typically set to be much smaller than $N$ . We find that for the five-dimensional test problems considered here, a modest $D=64$ appears to be sufficient for capturing the expected physics despite the simulations using a total of $N=2^{36}$ grid points, which would require $D=2^{18}$ for full-rank calculations. Additionally, we observe that a QTN time evolution scheme based on the Dirac–Frenkel variational principle allows one to use somewhat larger time steps than prescribed by the Courant–Friedrichs–Lewy constraint. As such, this work demonstrates that the QTN format is a promising means of approximately solving the Vlasov–Maxwell equations with significantly reduced cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plasma Physics
Journal of Plasma Physics 物理-物理:流体与等离子体
CiteScore
3.50
自引率
16.00%
发文量
106
审稿时长
6-12 weeks
期刊介绍: JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信