{"title":"通过氮整合二氧化碳共还原实现高附加值化学品的绿色合成:综述","authors":"Zhi-Chao Wang, Si-Si Liu, Yan-Zheng He, Yu-Zhuo Jiang, Yun-Fei Huan, Qi-Yang Cheng, Cheng-Tao Yang, Meng-Fan Wang, Cheng-Lin Yan, Tao Qian","doi":"10.1007/s12598-024-02954-9","DOIUrl":null,"url":null,"abstract":"<p>The acceleration of global industrialization and overuse of fossil fuels have caused the release of greenhouse gases and the disruption of the natural nitrogen cycle, leading to numerous energy and environmental problems. In response to the worsening situation, currently, achieving carbon neutrality and the nitrogen cycle is the most urgent task. In this case, reforming modern industrial production is of high importance and a great challenge as well. N-integrated carbon dioxide (CO<sub>2</sub>) co-reduction has gained a lot of attention from the scientific community, particularly in recent years, and is considered a promising approach to turn waste into wealth and achieve carbon neutrality and a nitrogen cycle. In this review, a comprehensive review of the catalytic coupling of CO<sub>2</sub> and nitrogenous small molecules (such as N<sub>2</sub>, NH<sub>3</sub> and NO<sub><i>x</i></sub>) for the green synthesis of high-value chemicals is presented, including representative urea, amines, and amides. In these advances, in-depth discussions of C−N coupling are critically evaluated from the standpoints of catalyst design strategies and possible reaction mechanisms, highlighting the key factors and descriptors that affect the catalytic performance. Finally, the remaining challenges and further prospects are also proposed, with the aim of setting the trajectory for future development of green synthesis of high-value-added chemicals.</p><h3 data-test=\"abstract-sub-heading\">Graphic Abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"34 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving green synthesis of high-value-added chemicals via N-integrated CO2 co-reduction: a review\",\"authors\":\"Zhi-Chao Wang, Si-Si Liu, Yan-Zheng He, Yu-Zhuo Jiang, Yun-Fei Huan, Qi-Yang Cheng, Cheng-Tao Yang, Meng-Fan Wang, Cheng-Lin Yan, Tao Qian\",\"doi\":\"10.1007/s12598-024-02954-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The acceleration of global industrialization and overuse of fossil fuels have caused the release of greenhouse gases and the disruption of the natural nitrogen cycle, leading to numerous energy and environmental problems. In response to the worsening situation, currently, achieving carbon neutrality and the nitrogen cycle is the most urgent task. In this case, reforming modern industrial production is of high importance and a great challenge as well. N-integrated carbon dioxide (CO<sub>2</sub>) co-reduction has gained a lot of attention from the scientific community, particularly in recent years, and is considered a promising approach to turn waste into wealth and achieve carbon neutrality and a nitrogen cycle. In this review, a comprehensive review of the catalytic coupling of CO<sub>2</sub> and nitrogenous small molecules (such as N<sub>2</sub>, NH<sub>3</sub> and NO<sub><i>x</i></sub>) for the green synthesis of high-value chemicals is presented, including representative urea, amines, and amides. In these advances, in-depth discussions of C−N coupling are critically evaluated from the standpoints of catalyst design strategies and possible reaction mechanisms, highlighting the key factors and descriptors that affect the catalytic performance. Finally, the remaining challenges and further prospects are also proposed, with the aim of setting the trajectory for future development of green synthesis of high-value-added chemicals.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphic Abstract</h3>\\n\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02954-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02954-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Achieving green synthesis of high-value-added chemicals via N-integrated CO2 co-reduction: a review
The acceleration of global industrialization and overuse of fossil fuels have caused the release of greenhouse gases and the disruption of the natural nitrogen cycle, leading to numerous energy and environmental problems. In response to the worsening situation, currently, achieving carbon neutrality and the nitrogen cycle is the most urgent task. In this case, reforming modern industrial production is of high importance and a great challenge as well. N-integrated carbon dioxide (CO2) co-reduction has gained a lot of attention from the scientific community, particularly in recent years, and is considered a promising approach to turn waste into wealth and achieve carbon neutrality and a nitrogen cycle. In this review, a comprehensive review of the catalytic coupling of CO2 and nitrogenous small molecules (such as N2, NH3 and NOx) for the green synthesis of high-value chemicals is presented, including representative urea, amines, and amides. In these advances, in-depth discussions of C−N coupling are critically evaluated from the standpoints of catalyst design strategies and possible reaction mechanisms, highlighting the key factors and descriptors that affect the catalytic performance. Finally, the remaining challenges and further prospects are also proposed, with the aim of setting the trajectory for future development of green synthesis of high-value-added chemicals.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.