使用硼氢化氨锂增强 LLZTO 界面的离子传输

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Yijiao Wang, Peng Liu, Shuo Wang, Zhan Xin, Miao Yu, Caiting Yuan, Pingting He, Yingtong Lv, Tengfei Zhang
{"title":"使用硼氢化氨锂增强 LLZTO 界面的离子传输","authors":"Yijiao Wang, Peng Liu, Shuo Wang, Zhan Xin, Miao Yu, Caiting Yuan, Pingting He, Yingtong Lv, Tengfei Zhang","doi":"10.1002/adsu.202400428","DOIUrl":null,"url":null,"abstract":"Garnetbased all-solid-state electrolytes are promising because of their wide electrochemical window and high ionic conductivity. However, the preparation process for garnet-based solid-state electrolytes is complex, requiring a high sintering temperature (&gt;1050 °C) and a long sintering time (&gt;10 h), which results in poor contact with the electrode. In this work, hydride coating modification can effectively improve the interface contact of oxide particles and enhance the ability of ion conduction. Hence, a series of composite electrolytes Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub>-xwt%Li(NH<sub>3</sub>)<sub>0.2</sub>BH<sub>4</sub> (LLZTO-xwt%LNB, 0≤x≤30) is synthesized at Room temperature (RT), in which hydrides uniformly coat and fill in the pores of LLZTO to provide lithium-ion transport channels. At 30 °C, the conductivity of LLZTO-10wt%Li(NH<sub>3</sub>)<sub>0.2</sub>BH<sub>4</sub> (LLZTO-10wt%LNB, 2.3 × 10<sup>−4</sup> S cm<sup>−1</sup>) is four orders higher than pristine untreated LLZTO (8.7 × 10<sup>−8</sup> S cm<sup>−1</sup>), and two orders higher than pristine Li(NH<sub>3</sub>)<sub>0.2</sub>BH<sub>4</sub> (1.3 × 10<sup>−6</sup> S cm<sup>−1</sup>). The critical current density reaches up to 3 mA cm<sup>−2</sup>, demonstrating excellent stability against lithium. These strategies positively impact the development and application of solid-state electrolytes.","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"49 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Ionic Transport at the Interface of LLZTO by Using Lithium Borohydride Ammoniates\",\"authors\":\"Yijiao Wang, Peng Liu, Shuo Wang, Zhan Xin, Miao Yu, Caiting Yuan, Pingting He, Yingtong Lv, Tengfei Zhang\",\"doi\":\"10.1002/adsu.202400428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Garnetbased all-solid-state electrolytes are promising because of their wide electrochemical window and high ionic conductivity. However, the preparation process for garnet-based solid-state electrolytes is complex, requiring a high sintering temperature (&gt;1050 °C) and a long sintering time (&gt;10 h), which results in poor contact with the electrode. In this work, hydride coating modification can effectively improve the interface contact of oxide particles and enhance the ability of ion conduction. Hence, a series of composite electrolytes Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub>-xwt%Li(NH<sub>3</sub>)<sub>0.2</sub>BH<sub>4</sub> (LLZTO-xwt%LNB, 0≤x≤30) is synthesized at Room temperature (RT), in which hydrides uniformly coat and fill in the pores of LLZTO to provide lithium-ion transport channels. At 30 °C, the conductivity of LLZTO-10wt%Li(NH<sub>3</sub>)<sub>0.2</sub>BH<sub>4</sub> (LLZTO-10wt%LNB, 2.3 × 10<sup>−4</sup> S cm<sup>−1</sup>) is four orders higher than pristine untreated LLZTO (8.7 × 10<sup>−8</sup> S cm<sup>−1</sup>), and two orders higher than pristine Li(NH<sub>3</sub>)<sub>0.2</sub>BH<sub>4</sub> (1.3 × 10<sup>−6</sup> S cm<sup>−1</sup>). The critical current density reaches up to 3 mA cm<sup>−2</sup>, demonstrating excellent stability against lithium. These strategies positively impact the development and application of solid-state electrolytes.\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adsu.202400428\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adsu.202400428","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

石榴石基全固态电解质具有广阔的电化学窗口和高离子导电性,因此前景广阔。然而,石榴石基固态电解质的制备工艺复杂,需要较高的烧结温度(>1050 °C)和较长的烧结时间(>10 h),导致其与电极接触不良。在这项工作中,氢化物涂层改性可以有效改善氧化物颗粒的界面接触,增强离子传导能力。因此,我们在室温下合成了一系列 Li6.4La3Zr1.4Ta0.6O12-xwt%Li(NH3)0.2BH4 (LLZTO-xwt%LNB,0≤x≤30)复合电解质,其中的氢化物均匀地包覆并填充在 LLZTO 的孔隙中,为其提供了锂离子传输通道。在 30 °C 时,LLZTO-10wt%Li(NH3)0.2BH4(LLZTO-10wt%LNB,2.3 × 10-4 S cm-1)的电导率比未经处理的原始 LLZTO(8.7 × 10-8 S cm-1)高四个数量级,比原始 Li(NH3)0.2BH4 (1.3 × 10-6 S cm-1)高两个数量级。临界电流密度高达 3 mA cm-2,显示了对锂的卓越稳定性。这些策略对固态电解质的开发和应用产生了积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancement of Ionic Transport at the Interface of LLZTO by Using Lithium Borohydride Ammoniates

Enhancement of Ionic Transport at the Interface of LLZTO by Using Lithium Borohydride Ammoniates
Garnetbased all-solid-state electrolytes are promising because of their wide electrochemical window and high ionic conductivity. However, the preparation process for garnet-based solid-state electrolytes is complex, requiring a high sintering temperature (>1050 °C) and a long sintering time (>10 h), which results in poor contact with the electrode. In this work, hydride coating modification can effectively improve the interface contact of oxide particles and enhance the ability of ion conduction. Hence, a series of composite electrolytes Li6.4La3Zr1.4Ta0.6O12-xwt%Li(NH3)0.2BH4 (LLZTO-xwt%LNB, 0≤x≤30) is synthesized at Room temperature (RT), in which hydrides uniformly coat and fill in the pores of LLZTO to provide lithium-ion transport channels. At 30 °C, the conductivity of LLZTO-10wt%Li(NH3)0.2BH4 (LLZTO-10wt%LNB, 2.3 × 10−4 S cm−1) is four orders higher than pristine untreated LLZTO (8.7 × 10−8 S cm−1), and two orders higher than pristine Li(NH3)0.2BH4 (1.3 × 10−6 S cm−1). The critical current density reaches up to 3 mA cm−2, demonstrating excellent stability against lithium. These strategies positively impact the development and application of solid-state electrolytes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信