Zilin Wang;Yi Zhong;Zehong Ou;Youming Yang;Shuo Feng;Guang Chen;Xiaoxin Cui;Song Jia;Yuan Wang
{"title":"Marmotini:采用混合压缩方法的尖峰神经网络权重密度自适应架构","authors":"Zilin Wang;Yi Zhong;Zehong Ou;Youming Yang;Shuo Feng;Guang Chen;Xiaoxin Cui;Song Jia;Yuan Wang","doi":"10.1109/TVLSI.2024.3453897","DOIUrl":null,"url":null,"abstract":"Brain-inspired spiking neural network (SNN) has recently attracted widespread interest owing to its event-driven nature and relatively low-power hardware for transmitting highly sparse binary spikes. To further improve energy efficiency, some matrix compression algorithms are used for weight storage. However, the weight sparsity of different layers varies greatly. For a multicore neuromorphic system, it is difficult for the same compression algorithm to adapt to all the layers of SNN model. In this work, we propose a weight density adaptation architecture with hybrid compression method for SNN, named Marmotini. It is a multicore heterogeneous design, including three types of cores to complete computation of different weight sparsity. Benefiting from the hybrid compression method, Marmotini minimizes the waste of neurons and weights as much as possible. Besides, for better flexibility, a reconfigurable core that can be configured to compute convolutional layer or fully connected layer is proposed. Implemented on Xilinx Kintex UltraScale XCKU115 field-programmable gate array (FPGA) board, Marmotini can operate at 150-MHz frequency, achieving 244.6-GSOP/s peak performance and 54.1-GSOP/W energy efficiency at 0% spike sparsity.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"32 12","pages":"2293-2302"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marmotini: A Weight Density Adaptation Architecture With Hybrid Compression Method for Spiking Neural Network\",\"authors\":\"Zilin Wang;Yi Zhong;Zehong Ou;Youming Yang;Shuo Feng;Guang Chen;Xiaoxin Cui;Song Jia;Yuan Wang\",\"doi\":\"10.1109/TVLSI.2024.3453897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-inspired spiking neural network (SNN) has recently attracted widespread interest owing to its event-driven nature and relatively low-power hardware for transmitting highly sparse binary spikes. To further improve energy efficiency, some matrix compression algorithms are used for weight storage. However, the weight sparsity of different layers varies greatly. For a multicore neuromorphic system, it is difficult for the same compression algorithm to adapt to all the layers of SNN model. In this work, we propose a weight density adaptation architecture with hybrid compression method for SNN, named Marmotini. It is a multicore heterogeneous design, including three types of cores to complete computation of different weight sparsity. Benefiting from the hybrid compression method, Marmotini minimizes the waste of neurons and weights as much as possible. Besides, for better flexibility, a reconfigurable core that can be configured to compute convolutional layer or fully connected layer is proposed. Implemented on Xilinx Kintex UltraScale XCKU115 field-programmable gate array (FPGA) board, Marmotini can operate at 150-MHz frequency, achieving 244.6-GSOP/s peak performance and 54.1-GSOP/W energy efficiency at 0% spike sparsity.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"32 12\",\"pages\":\"2293-2302\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682801/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10682801/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Marmotini: A Weight Density Adaptation Architecture With Hybrid Compression Method for Spiking Neural Network
Brain-inspired spiking neural network (SNN) has recently attracted widespread interest owing to its event-driven nature and relatively low-power hardware for transmitting highly sparse binary spikes. To further improve energy efficiency, some matrix compression algorithms are used for weight storage. However, the weight sparsity of different layers varies greatly. For a multicore neuromorphic system, it is difficult for the same compression algorithm to adapt to all the layers of SNN model. In this work, we propose a weight density adaptation architecture with hybrid compression method for SNN, named Marmotini. It is a multicore heterogeneous design, including three types of cores to complete computation of different weight sparsity. Benefiting from the hybrid compression method, Marmotini minimizes the waste of neurons and weights as much as possible. Besides, for better flexibility, a reconfigurable core that can be configured to compute convolutional layer or fully connected layer is proposed. Implemented on Xilinx Kintex UltraScale XCKU115 field-programmable gate array (FPGA) board, Marmotini can operate at 150-MHz frequency, achieving 244.6-GSOP/s peak performance and 54.1-GSOP/W energy efficiency at 0% spike sparsity.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.