评估将鳞毛皮提取的纤维素作为超声凝胶基质材料的适用性

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ji Woo Han, Nu Ri Han, Hye Jin Hwang, Byung Man Lee, Hwa Sung Shin, Sang Hyun Lee, Yun Jung Yang
{"title":"评估将鳞毛皮提取的纤维素作为超声凝胶基质材料的适用性","authors":"Ji Woo Han, Nu Ri Han, Hye Jin Hwang, Byung Man Lee, Hwa Sung Shin, Sang Hyun Lee, Yun Jung Yang","doi":"10.1007/s12257-024-00146-x","DOIUrl":null,"url":null,"abstract":"<p>Cellulose is widely considered an outstanding biomaterial due to its remarkable ionic properties, exceptional biocompatibility, and low toxicity. Its abundant surface hydroxyl groups facilitate increased hydrogen bonding, improving gelation and swelling capabilities. Moreover, incorporating carboxymethyl groups enhances solubility and allows for diverse formulations, serving as multifunctional cross-linkers. Among the various sources of this compound, tunicate-derived cellulose is an animal-derived cellulose and food byproduct with low utility. However, recycling tunicate skin into a useful biomaterial would provide access to the unique characteristics of animal cellulose, distinct from those of plant-derived cellulose. Particularly, tunicate cellulose has a longer fiber length than plant cellulose, enhancing the sound propagation speed within the material and making it suitable for the production of ultrasound-responsive gels. This study examined the viscosity and conductivity of tunicate-derived carboxymethyl celluloseto assess its applicability as an ultrasound gel. Additionally, small molecule release after ultrasound stimulation was also evaluated.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":"22 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the applicability of tunicate skin-extracted cellulose as a base material for ultrasound gel\",\"authors\":\"Ji Woo Han, Nu Ri Han, Hye Jin Hwang, Byung Man Lee, Hwa Sung Shin, Sang Hyun Lee, Yun Jung Yang\",\"doi\":\"10.1007/s12257-024-00146-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellulose is widely considered an outstanding biomaterial due to its remarkable ionic properties, exceptional biocompatibility, and low toxicity. Its abundant surface hydroxyl groups facilitate increased hydrogen bonding, improving gelation and swelling capabilities. Moreover, incorporating carboxymethyl groups enhances solubility and allows for diverse formulations, serving as multifunctional cross-linkers. Among the various sources of this compound, tunicate-derived cellulose is an animal-derived cellulose and food byproduct with low utility. However, recycling tunicate skin into a useful biomaterial would provide access to the unique characteristics of animal cellulose, distinct from those of plant-derived cellulose. Particularly, tunicate cellulose has a longer fiber length than plant cellulose, enhancing the sound propagation speed within the material and making it suitable for the production of ultrasound-responsive gels. This study examined the viscosity and conductivity of tunicate-derived carboxymethyl celluloseto assess its applicability as an ultrasound gel. Additionally, small molecule release after ultrasound stimulation was also evaluated.</p>\",\"PeriodicalId\":8936,\"journal\":{\"name\":\"Biotechnology and Bioprocess Engineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioprocess Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12257-024-00146-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00146-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纤维素具有显著的离子特性、优异的生物相容性和低毒性,因此被广泛认为是一种出色的生物材料。其丰富的表面羟基有助于增加氢键,提高凝胶和溶胀能力。此外,羧甲基基团的加入可提高溶解度,使配方多样化,成为多功能交联剂。在这种化合物的各种来源中,鳞毛纤维素是一种动物来源的纤维素和食品副产品,实用性较低。然而,将鳞毛皮回收利用成有用的生物材料,可以获得动物纤维素不同于植物纤维素的独特特性。特别是,鳞毛纤维素的纤维长度比植物纤维素长,从而提高了声音在材料内部的传播速度,使其适用于生产超声响应凝胶。本研究检测了纤毛虫衍生的羧甲基纤维素的粘度和电导率,以评估其作为超声凝胶的适用性。此外,还评估了超声刺激后小分子的释放情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessing the applicability of tunicate skin-extracted cellulose as a base material for ultrasound gel

Assessing the applicability of tunicate skin-extracted cellulose as a base material for ultrasound gel

Cellulose is widely considered an outstanding biomaterial due to its remarkable ionic properties, exceptional biocompatibility, and low toxicity. Its abundant surface hydroxyl groups facilitate increased hydrogen bonding, improving gelation and swelling capabilities. Moreover, incorporating carboxymethyl groups enhances solubility and allows for diverse formulations, serving as multifunctional cross-linkers. Among the various sources of this compound, tunicate-derived cellulose is an animal-derived cellulose and food byproduct with low utility. However, recycling tunicate skin into a useful biomaterial would provide access to the unique characteristics of animal cellulose, distinct from those of plant-derived cellulose. Particularly, tunicate cellulose has a longer fiber length than plant cellulose, enhancing the sound propagation speed within the material and making it suitable for the production of ultrasound-responsive gels. This study examined the viscosity and conductivity of tunicate-derived carboxymethyl celluloseto assess its applicability as an ultrasound gel. Additionally, small molecule release after ultrasound stimulation was also evaluated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioprocess Engineering
Biotechnology and Bioprocess Engineering 工程技术-生物工程与应用微生物
CiteScore
5.00
自引率
12.50%
发文量
79
审稿时长
3 months
期刊介绍: Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信