在阳光直射下光催化生产 H2O2 的可回收 g-C3N4 和掺 K g-C3N4 粒子

IF 2.2 4区 化学 Q2 Engineering
Manisha S. Kumar, P. Haripriya, Darbha V. Ravi Kumar
{"title":"在阳光直射下光催化生产 H2O2 的可回收 g-C3N4 和掺 K g-C3N4 粒子","authors":"Manisha S. Kumar,&nbsp;P. Haripriya,&nbsp;Darbha V. Ravi Kumar","doi":"10.1007/s11696-024-03694-x","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is an environmentally friendly oxidant, producing only water as a by-product upon decomposition. Given the energy-intensive nature of the conventional anthraquinone process for commercial H<sub>2</sub>O<sub>2</sub> production, photocatalytic production of H<sub>2</sub>O<sub>2</sub> using graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) emerges as a viable alternative. Among the other alternatives for improving the efficiency of g-C<sub>3</sub>N<sub>4</sub>, potassium ion doping in g-C<sub>3</sub>N<sub>4</sub> is one of the efficient methods that can further increases the yield of H<sub>2</sub>O<sub>2</sub> production, as the K<sup>+</sup> doping enhances the photogenerated charge carriers’ separation, intensity and range of visible light absorption, etc. However, traditional methods of catalyst dispersion are inefficient due to the challenges of retrieving the catalyst. Immobilization, while addressing the retrieval issues, adversely affects mass transfer and lowers photocatalyst efficiency. Hence, in this study, we explore an innovative approach to catalyst recycling by forming the catalyst into pellets that avoid immobilization, centrifugation, or any other tedious energy intensive separation process. Pellets of undoped g-C<sub>3</sub>N<sub>4</sub> and 10 wt% K-doped g-C<sub>3</sub>N<sub>4</sub> are tested for the photocatalytic production of H<sub>2</sub>O<sub>2</sub> under direct sunlight and recycled for three times. These materials, <i>i.e.,</i> undoped g-C<sub>3</sub>N<sub>4</sub> and 10 wt% K-doped g-C<sub>3</sub>N<sub>4</sub> pellets are able to produce ~ 407 µM g<sup>−1</sup> h<sup>−1</sup> and ~ 853 µM g<sup>−1</sup> h<sup>−1</sup> of H<sub>2</sub>O<sub>2</sub>, respectively, after three recycles. Such a novel approach of recycling the catalysts in the form of pellets can be extended for the large-scale production of H<sub>2</sub>O<sub>2</sub> by loading the pellets to fixed bed column and operating it in continuous flow manner.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"78 15","pages":"8465 - 8472"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recyclable g-C3N4 and K-doped g-C3N4 pellets for the photocatalytic production of H2O2 under direct sunlight\",\"authors\":\"Manisha S. Kumar,&nbsp;P. Haripriya,&nbsp;Darbha V. Ravi Kumar\",\"doi\":\"10.1007/s11696-024-03694-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is an environmentally friendly oxidant, producing only water as a by-product upon decomposition. Given the energy-intensive nature of the conventional anthraquinone process for commercial H<sub>2</sub>O<sub>2</sub> production, photocatalytic production of H<sub>2</sub>O<sub>2</sub> using graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) emerges as a viable alternative. Among the other alternatives for improving the efficiency of g-C<sub>3</sub>N<sub>4</sub>, potassium ion doping in g-C<sub>3</sub>N<sub>4</sub> is one of the efficient methods that can further increases the yield of H<sub>2</sub>O<sub>2</sub> production, as the K<sup>+</sup> doping enhances the photogenerated charge carriers’ separation, intensity and range of visible light absorption, etc. However, traditional methods of catalyst dispersion are inefficient due to the challenges of retrieving the catalyst. Immobilization, while addressing the retrieval issues, adversely affects mass transfer and lowers photocatalyst efficiency. Hence, in this study, we explore an innovative approach to catalyst recycling by forming the catalyst into pellets that avoid immobilization, centrifugation, or any other tedious energy intensive separation process. Pellets of undoped g-C<sub>3</sub>N<sub>4</sub> and 10 wt% K-doped g-C<sub>3</sub>N<sub>4</sub> are tested for the photocatalytic production of H<sub>2</sub>O<sub>2</sub> under direct sunlight and recycled for three times. These materials, <i>i.e.,</i> undoped g-C<sub>3</sub>N<sub>4</sub> and 10 wt% K-doped g-C<sub>3</sub>N<sub>4</sub> pellets are able to produce ~ 407 µM g<sup>−1</sup> h<sup>−1</sup> and ~ 853 µM g<sup>−1</sup> h<sup>−1</sup> of H<sub>2</sub>O<sub>2</sub>, respectively, after three recycles. Such a novel approach of recycling the catalysts in the form of pellets can be extended for the large-scale production of H<sub>2</sub>O<sub>2</sub> by loading the pellets to fixed bed column and operating it in continuous flow manner.</p></div>\",\"PeriodicalId\":513,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"78 15\",\"pages\":\"8465 - 8472\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-024-03694-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03694-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

过氧化氢(H2O2)是一种环境友好型氧化剂,分解时只产生水作为副产品。鉴于商业化生产 H2O2 的传统蒽醌工艺能源密集,使用石墨氮化碳(g-C3N4)光催化生产 H2O2 成为一种可行的替代方法。在提高 g-C3N4 效率的其他替代方法中,在 g-C3N4 中掺入钾离子是一种有效的方法,可进一步提高 H2O2 的产量,因为掺入 K+ 可增强光生电荷载流子的分离、可见光吸收的强度和范围等。然而,传统的催化剂分散方法因催化剂回收难题而效率低下。固定化在解决回收问题的同时,也会对传质产生不利影响,降低光催化剂的效率。因此,在本研究中,我们探索了一种创新的催化剂回收方法,将催化剂制成颗粒,避免了固定化、离心或任何其他繁琐的高能耗分离过程。我们测试了未掺杂 g-C3N4 和 10 wt% K 掺杂 g-C3N4 的颗粒在阳光直射下光催化产生 H2O2 的情况,并对其进行了三次循环利用。这些材料,即未掺杂的 g-C3N4 和 10 wt% 掺杂 K 的 g-C3N4 颗粒,在循环三次后分别能产生 ~ 407 µM g-1 h-1 和 ~ 853 µM g-1 h-1 的 H2O2。这种以颗粒形式回收催化剂的新方法可以通过将颗粒装入固定床柱并以连续流方式运行,扩展到 H2O2 的大规模生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recyclable g-C3N4 and K-doped g-C3N4 pellets for the photocatalytic production of H2O2 under direct sunlight

Recyclable g-C3N4 and K-doped g-C3N4 pellets for the photocatalytic production of H2O2 under direct sunlight

Hydrogen peroxide (H2O2) is an environmentally friendly oxidant, producing only water as a by-product upon decomposition. Given the energy-intensive nature of the conventional anthraquinone process for commercial H2O2 production, photocatalytic production of H2O2 using graphitic carbon nitride (g-C3N4) emerges as a viable alternative. Among the other alternatives for improving the efficiency of g-C3N4, potassium ion doping in g-C3N4 is one of the efficient methods that can further increases the yield of H2O2 production, as the K+ doping enhances the photogenerated charge carriers’ separation, intensity and range of visible light absorption, etc. However, traditional methods of catalyst dispersion are inefficient due to the challenges of retrieving the catalyst. Immobilization, while addressing the retrieval issues, adversely affects mass transfer and lowers photocatalyst efficiency. Hence, in this study, we explore an innovative approach to catalyst recycling by forming the catalyst into pellets that avoid immobilization, centrifugation, or any other tedious energy intensive separation process. Pellets of undoped g-C3N4 and 10 wt% K-doped g-C3N4 are tested for the photocatalytic production of H2O2 under direct sunlight and recycled for three times. These materials, i.e., undoped g-C3N4 and 10 wt% K-doped g-C3N4 pellets are able to produce ~ 407 µM g−1 h−1 and ~ 853 µM g−1 h−1 of H2O2, respectively, after three recycles. Such a novel approach of recycling the catalysts in the form of pellets can be extended for the large-scale production of H2O2 by loading the pellets to fixed bed column and operating it in continuous flow manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Papers
Chemical Papers Chemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍: Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信