{"title":"关于 GL(m) 和 GL(m|n) 的舒尔-韦尔对偶性的说明","authors":"František Marko","doi":"10.1007/s10468-024-10290-w","DOIUrl":null,"url":null,"abstract":"<div><p>We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)\",\"authors\":\"František Marko\",\"doi\":\"10.1007/s10468-024-10290-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10290-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10290-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)
We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.