{"title":"关于 GL(m) 和 GL(m|n) 的舒尔-韦尔对偶性的说明","authors":"František Marko","doi":"10.1007/s10468-024-10290-w","DOIUrl":null,"url":null,"abstract":"<div><p>We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 5","pages":"1957 - 1979"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)\",\"authors\":\"František Marko\",\"doi\":\"10.1007/s10468-024-10290-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 5\",\"pages\":\"1957 - 1979\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10290-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10290-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Note on Schur-Weyl Dualities for GL(m) and GL(m|n)
We use a unified elementary approach to prove the second part of classical, mixed, super, and mixed super Schur-Weyl dualities for general linear groups and supergroups over an infinite ground field of arbitrary characteristic. These dualities describe the endomorphism algebras of the tensor space and mixed tensor space, respectively, over the group algebra of the symmetric group and the Brauer wall algebra, respectively. Our main new results are the second part of the mixed Schur-Weyl dualities and mixed super Schur-Weyl dualities over an infinite ground field of positive characteristic.
期刊介绍:
Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups.
The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.