{"title":"利用硅中单个高自旋原子核的量子增强磁力计","authors":"Tao Xin, 涛 辛, Ke Zhang, 科 张, Jun Li and 俊 李","doi":"10.1088/1674-1056/ad5a75","DOIUrl":null,"url":null,"abstract":"Quantum enhanced metrology has the potential to go beyond the standard quantum limit and eventually to the ultimate Heisenberg bound. In particular, quantum probes prepared in nonclassical coherent states have recently been recognized as a useful resource for metrology. Hence, there has been considerable interest in constructing magnetic quantum sensors that combine high resolution and high sensitivity. Here, we explore a nanoscale magnetometer with quantum-enhanced sensitivity, based on 123Sb (I = 7/2) nuclear spin doped in silicon, that takes advantage of techniques of spin-squeezing and coherent control. With the optimal squeezed initial state, the magnetic field sensitivity may be expected to approach 6 aT⋅Hz−1/2⋅cm−3/2 and 603 nT⋅Hz−1/2 at the single-spin level. This magnetic sensor may provide a novel sensitive and high-resolution route to microscopic mapping of magnetic fields as well as other applications.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"32 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantum-enhanced magnetometer using a single high-spin nucleus in silicon\",\"authors\":\"Tao Xin, 涛 辛, Ke Zhang, 科 张, Jun Li and 俊 李\",\"doi\":\"10.1088/1674-1056/ad5a75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum enhanced metrology has the potential to go beyond the standard quantum limit and eventually to the ultimate Heisenberg bound. In particular, quantum probes prepared in nonclassical coherent states have recently been recognized as a useful resource for metrology. Hence, there has been considerable interest in constructing magnetic quantum sensors that combine high resolution and high sensitivity. Here, we explore a nanoscale magnetometer with quantum-enhanced sensitivity, based on 123Sb (I = 7/2) nuclear spin doped in silicon, that takes advantage of techniques of spin-squeezing and coherent control. With the optimal squeezed initial state, the magnetic field sensitivity may be expected to approach 6 aT⋅Hz−1/2⋅cm−3/2 and 603 nT⋅Hz−1/2 at the single-spin level. This magnetic sensor may provide a novel sensitive and high-resolution route to microscopic mapping of magnetic fields as well as other applications.\",\"PeriodicalId\":10253,\"journal\":{\"name\":\"Chinese Physics B\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1056/ad5a75\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad5a75","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A quantum-enhanced magnetometer using a single high-spin nucleus in silicon
Quantum enhanced metrology has the potential to go beyond the standard quantum limit and eventually to the ultimate Heisenberg bound. In particular, quantum probes prepared in nonclassical coherent states have recently been recognized as a useful resource for metrology. Hence, there has been considerable interest in constructing magnetic quantum sensors that combine high resolution and high sensitivity. Here, we explore a nanoscale magnetometer with quantum-enhanced sensitivity, based on 123Sb (I = 7/2) nuclear spin doped in silicon, that takes advantage of techniques of spin-squeezing and coherent control. With the optimal squeezed initial state, the magnetic field sensitivity may be expected to approach 6 aT⋅Hz−1/2⋅cm−3/2 and 603 nT⋅Hz−1/2 at the single-spin level. This magnetic sensor may provide a novel sensitive and high-resolution route to microscopic mapping of magnetic fields as well as other applications.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.