Vitus Hupp, Bernhard Schartel, Kerstin Flothmeier, Andreas Hartwig
{"title":"阻燃胶带及其对粘合部件火灾行为的影响","authors":"Vitus Hupp, Bernhard Schartel, Kerstin Flothmeier, Andreas Hartwig","doi":"10.1007/s10694-024-01637-2","DOIUrl":null,"url":null,"abstract":"<p>Pressure-sensitive adhesive tapes are used in automotives, railway vehicles and construction, where flame retardancy is of major importance. This is why industrial applicants often buy, and industrial tape manufacturers often produce, flame-retardant adhesive tapes, advertised for their good flammability characteristics. Yet, how flame-retardant tapes influence the fire behavior of bonded materials is a rather open question. To investigate this issue, three different substrates were bonded, using eight double-sided adhesive tapes containing two different carriers and two different flame retardants. The bonded substrates were compared to their monolithic counterparts in terms of flammability, fire behavior and fire stability. The fire behavior of adhesive tape bonded materials differed significantly from the monolithic substrates. The usage of different adhesive tapes let to different burning behavior of the bonded materials mainly due to different carrier systems. In contrast, the implementation of flame retardant into the adhesive had rather minor or no effect on the burning behavior of the bonded substrates despite their positive effect on the flammability of the free-standing tape. The carrier changed the HRR curve in the cone calorimeter and was able to both, reduce and increase fire hazards. Using the carrier with the better fire performance can lower the fire growth rate by 20%, the peak of heat release rate by 27%, and the maximum average rate of heat emission by 30% in cone calorimeter tests. Overall, the fire behavior of bonded materials is a complex interaction between substrate, adhesive, and carrier, and depends on the fire scenario the materials are exposed to.</p>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"48 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flame Retarded Adhesive Tapes and Their Influence on the Fire Behavior of Bonded Parts\",\"authors\":\"Vitus Hupp, Bernhard Schartel, Kerstin Flothmeier, Andreas Hartwig\",\"doi\":\"10.1007/s10694-024-01637-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pressure-sensitive adhesive tapes are used in automotives, railway vehicles and construction, where flame retardancy is of major importance. This is why industrial applicants often buy, and industrial tape manufacturers often produce, flame-retardant adhesive tapes, advertised for their good flammability characteristics. Yet, how flame-retardant tapes influence the fire behavior of bonded materials is a rather open question. To investigate this issue, three different substrates were bonded, using eight double-sided adhesive tapes containing two different carriers and two different flame retardants. The bonded substrates were compared to their monolithic counterparts in terms of flammability, fire behavior and fire stability. The fire behavior of adhesive tape bonded materials differed significantly from the monolithic substrates. The usage of different adhesive tapes let to different burning behavior of the bonded materials mainly due to different carrier systems. In contrast, the implementation of flame retardant into the adhesive had rather minor or no effect on the burning behavior of the bonded substrates despite their positive effect on the flammability of the free-standing tape. The carrier changed the HRR curve in the cone calorimeter and was able to both, reduce and increase fire hazards. Using the carrier with the better fire performance can lower the fire growth rate by 20%, the peak of heat release rate by 27%, and the maximum average rate of heat emission by 30% in cone calorimeter tests. Overall, the fire behavior of bonded materials is a complex interaction between substrate, adhesive, and carrier, and depends on the fire scenario the materials are exposed to.</p>\",\"PeriodicalId\":558,\"journal\":{\"name\":\"Fire Technology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10694-024-01637-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10694-024-01637-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Flame Retarded Adhesive Tapes and Their Influence on the Fire Behavior of Bonded Parts
Pressure-sensitive adhesive tapes are used in automotives, railway vehicles and construction, where flame retardancy is of major importance. This is why industrial applicants often buy, and industrial tape manufacturers often produce, flame-retardant adhesive tapes, advertised for their good flammability characteristics. Yet, how flame-retardant tapes influence the fire behavior of bonded materials is a rather open question. To investigate this issue, three different substrates were bonded, using eight double-sided adhesive tapes containing two different carriers and two different flame retardants. The bonded substrates were compared to their monolithic counterparts in terms of flammability, fire behavior and fire stability. The fire behavior of adhesive tape bonded materials differed significantly from the monolithic substrates. The usage of different adhesive tapes let to different burning behavior of the bonded materials mainly due to different carrier systems. In contrast, the implementation of flame retardant into the adhesive had rather minor or no effect on the burning behavior of the bonded substrates despite their positive effect on the flammability of the free-standing tape. The carrier changed the HRR curve in the cone calorimeter and was able to both, reduce and increase fire hazards. Using the carrier with the better fire performance can lower the fire growth rate by 20%, the peak of heat release rate by 27%, and the maximum average rate of heat emission by 30% in cone calorimeter tests. Overall, the fire behavior of bonded materials is a complex interaction between substrate, adhesive, and carrier, and depends on the fire scenario the materials are exposed to.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.