偏见产生偏见:有偏见的嵌入对扩散模型的影响

Sahil Kuchlous, Marvin Li, Jeffrey G. Wang
{"title":"偏见产生偏见:有偏见的嵌入对扩散模型的影响","authors":"Sahil Kuchlous, Marvin Li, Jeffrey G. Wang","doi":"arxiv-2409.09569","DOIUrl":null,"url":null,"abstract":"With the growing adoption of Text-to-Image (TTI) systems, the social biases\nof these models have come under increased scrutiny. Herein we conduct a\nsystematic investigation of one such source of bias for diffusion models:\nembedding spaces. First, because traditional classifier-based fairness\ndefinitions require true labels not present in generative modeling, we propose\nstatistical group fairness criteria based on a model's internal representation\nof the world. Using these definitions, we demonstrate theoretically and\nempirically that an unbiased text embedding space for input prompts is a\nnecessary condition for representationally balanced diffusion models, meaning\nthe distribution of generated images satisfy diversity requirements with\nrespect to protected attributes. Next, we investigate the impact of biased\nembeddings on evaluating the alignment between generated images and prompts, a\nprocess which is commonly used to assess diffusion models. We find that biased\nmultimodal embeddings like CLIP can result in lower alignment scores for\nrepresentationally balanced TTI models, thus rewarding unfair behavior.\nFinally, we develop a theoretical framework through which biases in alignment\nevaluation can be studied and propose bias mitigation methods. By specifically\nadapting the perspective of embedding spaces, we establish new fairness\nconditions for diffusion model development and evaluation.","PeriodicalId":501112,"journal":{"name":"arXiv - CS - Computers and Society","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias Begets Bias: The Impact of Biased Embeddings on Diffusion Models\",\"authors\":\"Sahil Kuchlous, Marvin Li, Jeffrey G. Wang\",\"doi\":\"arxiv-2409.09569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing adoption of Text-to-Image (TTI) systems, the social biases\\nof these models have come under increased scrutiny. Herein we conduct a\\nsystematic investigation of one such source of bias for diffusion models:\\nembedding spaces. First, because traditional classifier-based fairness\\ndefinitions require true labels not present in generative modeling, we propose\\nstatistical group fairness criteria based on a model's internal representation\\nof the world. Using these definitions, we demonstrate theoretically and\\nempirically that an unbiased text embedding space for input prompts is a\\nnecessary condition for representationally balanced diffusion models, meaning\\nthe distribution of generated images satisfy diversity requirements with\\nrespect to protected attributes. Next, we investigate the impact of biased\\nembeddings on evaluating the alignment between generated images and prompts, a\\nprocess which is commonly used to assess diffusion models. We find that biased\\nmultimodal embeddings like CLIP can result in lower alignment scores for\\nrepresentationally balanced TTI models, thus rewarding unfair behavior.\\nFinally, we develop a theoretical framework through which biases in alignment\\nevaluation can be studied and propose bias mitigation methods. By specifically\\nadapting the perspective of embedding spaces, we establish new fairness\\nconditions for diffusion model development and evaluation.\",\"PeriodicalId\":501112,\"journal\":{\"name\":\"arXiv - CS - Computers and Society\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computers and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computers and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着文本到图像(TTI)系统的应用日益广泛,这些模型的社会偏差受到了越来越多的关注。在此,我们对扩散模型的一个偏差来源--嵌入空间--进行了系统研究。首先,由于传统的基于分类器的公平性定义需要生成模型中不存在的真实标签,我们提出了基于模型对世界的内部表示的统计分组公平性标准。利用这些定义,我们从理论和经验上证明,输入提示的无偏文本嵌入空间是表征平衡扩散模型的必要条件,这意味着生成图像的分布满足受保护属性的多样性要求。接下来,我们研究了有偏见的嵌入对评估生成图像与提示之间的对齐度的影响,这一过程通常用于评估扩散模型。我们发现,有偏见的多模态嵌入(如 CLIP)会导致代表性平衡的 TTI 模型获得较低的配准分数,从而奖励不公平的行为。最后,我们建立了一个理论框架,通过该框架可以研究配准评估中的偏见,并提出了减少偏见的方法。通过特别调整嵌入空间的视角,我们为扩散模型的开发和评估建立了新的公平性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias Begets Bias: The Impact of Biased Embeddings on Diffusion Models
With the growing adoption of Text-to-Image (TTI) systems, the social biases of these models have come under increased scrutiny. Herein we conduct a systematic investigation of one such source of bias for diffusion models: embedding spaces. First, because traditional classifier-based fairness definitions require true labels not present in generative modeling, we propose statistical group fairness criteria based on a model's internal representation of the world. Using these definitions, we demonstrate theoretically and empirically that an unbiased text embedding space for input prompts is a necessary condition for representationally balanced diffusion models, meaning the distribution of generated images satisfy diversity requirements with respect to protected attributes. Next, we investigate the impact of biased embeddings on evaluating the alignment between generated images and prompts, a process which is commonly used to assess diffusion models. We find that biased multimodal embeddings like CLIP can result in lower alignment scores for representationally balanced TTI models, thus rewarding unfair behavior. Finally, we develop a theoretical framework through which biases in alignment evaluation can be studied and propose bias mitigation methods. By specifically adapting the perspective of embedding spaces, we establish new fairness conditions for diffusion model development and evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信