Maxwell Levis, Monica Dimambro, Joshua Levy, Vincent Dufort, Abby Fraade, Max Winer, Brian Shiner
{"title":"未被列为高自杀风险的退伍军人自杀死者的特征","authors":"Maxwell Levis, Monica Dimambro, Joshua Levy, Vincent Dufort, Abby Fraade, Max Winer, Brian Shiner","doi":"10.1017/s0033291724001296","DOIUrl":null,"url":null,"abstract":"<span>Background</span><p>Although the Department of Veterans Affairs (VA) has made important suicide prevention advances, efforts primarily target high-risk patients with documented suicide risk, such as suicidal ideation, prior suicide attempts, and recent psychiatric hospitalization. Approximately 90% of VA patients that go on to die by suicide do not meet these high-risk criteria and therefore do not receive targeted suicide prevention services. In this study, we used national VA data to focus on patients that were not classified as high-risk, but died by suicide.</p><span>Methods</span><p>Our sample included all VA patients who died by suicide in 2017 or 2018. We determined whether patients were classified as high-risk using the VA's machine learning risk prediction algorithm. After excluding these patients, we used principal component analysis to identify moderate-risk and low-risk patients and investigated demographics, service-usage, diagnoses, and social determinants of health differences across high-, moderate-, and low-risk subgroups.</p><span>Results</span><p>High-risk (<span>n</span> = 452) patients tended to be younger, White, unmarried, homeless, and have more mental health diagnoses compared to moderate- (<span>n</span> = 2149) and low-risk (<span>n</span> = 2209) patients. Moderate- and low-risk patients tended to be older, married, Black, and Native American or Pacific Islander, and have more physical health diagnoses compared to high-risk patients. Low-risk patients had more missing data than higher-risk patients.</p><span>Conclusions</span><p>Study expands epidemiological understanding about non-high-risk suicide decedents, historically understudied and underserved populations. Findings raise concerns about reliance on machine learning risk prediction models that may be biased by relative underrepresentation of racial/ethnic minorities within health system.</p>","PeriodicalId":20891,"journal":{"name":"Psychological Medicine","volume":"93 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing Veteran suicide decedents that were not classified as high-suicide-risk\",\"authors\":\"Maxwell Levis, Monica Dimambro, Joshua Levy, Vincent Dufort, Abby Fraade, Max Winer, Brian Shiner\",\"doi\":\"10.1017/s0033291724001296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span>Background</span><p>Although the Department of Veterans Affairs (VA) has made important suicide prevention advances, efforts primarily target high-risk patients with documented suicide risk, such as suicidal ideation, prior suicide attempts, and recent psychiatric hospitalization. Approximately 90% of VA patients that go on to die by suicide do not meet these high-risk criteria and therefore do not receive targeted suicide prevention services. In this study, we used national VA data to focus on patients that were not classified as high-risk, but died by suicide.</p><span>Methods</span><p>Our sample included all VA patients who died by suicide in 2017 or 2018. We determined whether patients were classified as high-risk using the VA's machine learning risk prediction algorithm. After excluding these patients, we used principal component analysis to identify moderate-risk and low-risk patients and investigated demographics, service-usage, diagnoses, and social determinants of health differences across high-, moderate-, and low-risk subgroups.</p><span>Results</span><p>High-risk (<span>n</span> = 452) patients tended to be younger, White, unmarried, homeless, and have more mental health diagnoses compared to moderate- (<span>n</span> = 2149) and low-risk (<span>n</span> = 2209) patients. Moderate- and low-risk patients tended to be older, married, Black, and Native American or Pacific Islander, and have more physical health diagnoses compared to high-risk patients. Low-risk patients had more missing data than higher-risk patients.</p><span>Conclusions</span><p>Study expands epidemiological understanding about non-high-risk suicide decedents, historically understudied and underserved populations. Findings raise concerns about reliance on machine learning risk prediction models that may be biased by relative underrepresentation of racial/ethnic minorities within health system.</p>\",\"PeriodicalId\":20891,\"journal\":{\"name\":\"Psychological Medicine\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/s0033291724001296\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/s0033291724001296","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Characterizing Veteran suicide decedents that were not classified as high-suicide-risk
Background
Although the Department of Veterans Affairs (VA) has made important suicide prevention advances, efforts primarily target high-risk patients with documented suicide risk, such as suicidal ideation, prior suicide attempts, and recent psychiatric hospitalization. Approximately 90% of VA patients that go on to die by suicide do not meet these high-risk criteria and therefore do not receive targeted suicide prevention services. In this study, we used national VA data to focus on patients that were not classified as high-risk, but died by suicide.
Methods
Our sample included all VA patients who died by suicide in 2017 or 2018. We determined whether patients were classified as high-risk using the VA's machine learning risk prediction algorithm. After excluding these patients, we used principal component analysis to identify moderate-risk and low-risk patients and investigated demographics, service-usage, diagnoses, and social determinants of health differences across high-, moderate-, and low-risk subgroups.
Results
High-risk (n = 452) patients tended to be younger, White, unmarried, homeless, and have more mental health diagnoses compared to moderate- (n = 2149) and low-risk (n = 2209) patients. Moderate- and low-risk patients tended to be older, married, Black, and Native American or Pacific Islander, and have more physical health diagnoses compared to high-risk patients. Low-risk patients had more missing data than higher-risk patients.
Conclusions
Study expands epidemiological understanding about non-high-risk suicide decedents, historically understudied and underserved populations. Findings raise concerns about reliance on machine learning risk prediction models that may be biased by relative underrepresentation of racial/ethnic minorities within health system.
期刊介绍:
Now in its fifth decade of publication, Psychological Medicine is a leading international journal in the fields of psychiatry, related aspects of psychology and basic sciences. From 2014, there are 16 issues a year, each featuring original articles reporting key research being undertaken worldwide, together with shorter editorials by distinguished scholars and an important book review section. The journal''s success is clearly demonstrated by a consistently high impact factor.