基于状态边界超表面的非饱和土壤水力学模型

IF 5.6 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Dongjie Hua, Guohua Zhang, Ruyan Liu, Qinghui Jiang
{"title":"基于状态边界超表面的非饱和土壤水力学模型","authors":"Dongjie Hua,&nbsp;Guohua Zhang,&nbsp;Ruyan Liu,&nbsp;Qinghui Jiang","doi":"10.1007/s11440-024-02390-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an elastoplastic model to estimate the hydromechanical behavior of unsaturated soils based on state boundary hypersurface. Through mechanical hypersurface, the influence of saturation on yield stress can be expressed in a full form rather than an incremental form. Two hydraulic hypersurfaces and one mechanical hypersurface are proposed to establish the model. Two hydraulic hypersurfaces, composed of degree of saturation, void ratio and matrix suction, define the plastic hydraulic boundary. The elastic hydraulic behavior of unsaturated soils can be represented by scanning lines between these two hydraulic hypersurfaces. The mechanical hypersurface, composed of degree of saturation, void ratio and effective stress, defines the plastic mechanical boundary. The elastic mechanical behavior of unsaturated soils can be represented by scanning lines below the mechanical hypersurfaces. A large number of laboratory tests are used to validated the proposed model, showing that it can reasonably capture important features of the hydromechanical behavior of unsaturated soils.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 10","pages":"6599 - 6615"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hydromechanical model for unsaturated soils based on state boundary hypersurface\",\"authors\":\"Dongjie Hua,&nbsp;Guohua Zhang,&nbsp;Ruyan Liu,&nbsp;Qinghui Jiang\",\"doi\":\"10.1007/s11440-024-02390-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an elastoplastic model to estimate the hydromechanical behavior of unsaturated soils based on state boundary hypersurface. Through mechanical hypersurface, the influence of saturation on yield stress can be expressed in a full form rather than an incremental form. Two hydraulic hypersurfaces and one mechanical hypersurface are proposed to establish the model. Two hydraulic hypersurfaces, composed of degree of saturation, void ratio and matrix suction, define the plastic hydraulic boundary. The elastic hydraulic behavior of unsaturated soils can be represented by scanning lines between these two hydraulic hypersurfaces. The mechanical hypersurface, composed of degree of saturation, void ratio and effective stress, defines the plastic mechanical boundary. The elastic mechanical behavior of unsaturated soils can be represented by scanning lines below the mechanical hypersurfaces. A large number of laboratory tests are used to validated the proposed model, showing that it can reasonably capture important features of the hydromechanical behavior of unsaturated soils.</p></div>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":\"19 10\",\"pages\":\"6599 - 6615\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11440-024-02390-0\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02390-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于状态边界超表面的弹塑性模型,用于估算非饱和土壤的水力学行为。通过力学超表面,饱和度对屈服应力的影响可以用完全形式而不是增量形式来表示。提出了两个水力超表面和一个力学超表面来建立模型。由饱和度、空隙率和基质吸力组成的两个水力超表面定义了塑性水力边界。这两个水力超表面之间的扫描线可代表非饱和土壤的弹性水力行为。由饱和度、空隙率和有效应力组成的力学超表面定义了塑性力学边界。非饱和土壤的弹性力学行为可用力学超表面下方的扫描线表示。大量的实验室试验验证了所提出的模型,表明该模型能够合理地捕捉非饱和土壤水力学行为的重要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A hydromechanical model for unsaturated soils based on state boundary hypersurface

A hydromechanical model for unsaturated soils based on state boundary hypersurface

A hydromechanical model for unsaturated soils based on state boundary hypersurface

This paper presents an elastoplastic model to estimate the hydromechanical behavior of unsaturated soils based on state boundary hypersurface. Through mechanical hypersurface, the influence of saturation on yield stress can be expressed in a full form rather than an incremental form. Two hydraulic hypersurfaces and one mechanical hypersurface are proposed to establish the model. Two hydraulic hypersurfaces, composed of degree of saturation, void ratio and matrix suction, define the plastic hydraulic boundary. The elastic hydraulic behavior of unsaturated soils can be represented by scanning lines between these two hydraulic hypersurfaces. The mechanical hypersurface, composed of degree of saturation, void ratio and effective stress, defines the plastic mechanical boundary. The elastic mechanical behavior of unsaturated soils can be represented by scanning lines below the mechanical hypersurfaces. A large number of laboratory tests are used to validated the proposed model, showing that it can reasonably capture important features of the hydromechanical behavior of unsaturated soils.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geotechnica
Acta Geotechnica ENGINEERING, GEOLOGICAL-
CiteScore
9.90
自引率
17.50%
发文量
297
审稿时长
4 months
期刊介绍: Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信