驻留表面声波场中声电泳与介电泳的相互作用:从球形颗粒到非球形颗粒

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Sebastian Sachs, David Schreier, Felix Brand, Klaus Stefan Drese, Christian Cierpka, Jörg König
{"title":"驻留表面声波场中声电泳与介电泳的相互作用:从球形颗粒到非球形颗粒","authors":"Sebastian Sachs,&nbsp;David Schreier,&nbsp;Felix Brand,&nbsp;Klaus Stefan Drese,&nbsp;Christian Cierpka,&nbsp;Jörg König","doi":"10.1007/s10404-024-02762-8","DOIUrl":null,"url":null,"abstract":"<div><p>Standing surface acoustic waves (sSAW) emerged as a flexible tool for precise manipulation of spherical and non-spherical objects in Lab-on-a-Chip devices. While the manipulation of suspended particles and cells in acoustofluidic devices is mostly dominated by acoustic forces due to acoustic scattering and the acoustically induced fluid flow, surface acoustic waves are inherently linked to an inhomogeneous electric field. The superimposed effects of dielectrophoretic forces and torques on polarizable particles are less explored in microfluidics using sSAW. In this study, a thorough analysis of the physical interplay of acoustophoresis and dielectrophoresis aims to bridge this gap. In comprehensive experiments, the dielectrophoretic impact on the behavior of spherical and non-spherical particles is distinguished by screening the electric field of the sSAW inside the micro channel locally. As a result, particles are forced into trapping locations across the entire channel height. However, the height position close to the bottom differs between the screened and non-screened region. Regardless of the shape of the particles used in this study, particles are forced towards the bottom at the region with screening, while being levitated at regions without screening. This indicates clearly the influence of the electric field in close vicinity to the substrate surface. Furthermore, the unintuitive preferred orientation of prolate spheroids perpendicular to the pressure nodes of the sSAW recently reported, is confirmed in both region regardless of the presence of the electric field. Based on a three-dimensional numerical model, this orientation results not only due to the acoustic torque but is also caused by the dielectrophoretic torque, which complement each other. The experimental and numerical findings are in excellent agreement and provide deep insights into the underlying physical mechanisms responsible for patterning and orientation of the particles.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-024-02762-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Interplay of acoustophoresis and dielectrophoresis in a standing surface acoustic wave field: from spherical to non-spherical particles\",\"authors\":\"Sebastian Sachs,&nbsp;David Schreier,&nbsp;Felix Brand,&nbsp;Klaus Stefan Drese,&nbsp;Christian Cierpka,&nbsp;Jörg König\",\"doi\":\"10.1007/s10404-024-02762-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Standing surface acoustic waves (sSAW) emerged as a flexible tool for precise manipulation of spherical and non-spherical objects in Lab-on-a-Chip devices. While the manipulation of suspended particles and cells in acoustofluidic devices is mostly dominated by acoustic forces due to acoustic scattering and the acoustically induced fluid flow, surface acoustic waves are inherently linked to an inhomogeneous electric field. The superimposed effects of dielectrophoretic forces and torques on polarizable particles are less explored in microfluidics using sSAW. In this study, a thorough analysis of the physical interplay of acoustophoresis and dielectrophoresis aims to bridge this gap. In comprehensive experiments, the dielectrophoretic impact on the behavior of spherical and non-spherical particles is distinguished by screening the electric field of the sSAW inside the micro channel locally. As a result, particles are forced into trapping locations across the entire channel height. However, the height position close to the bottom differs between the screened and non-screened region. Regardless of the shape of the particles used in this study, particles are forced towards the bottom at the region with screening, while being levitated at regions without screening. This indicates clearly the influence of the electric field in close vicinity to the substrate surface. Furthermore, the unintuitive preferred orientation of prolate spheroids perpendicular to the pressure nodes of the sSAW recently reported, is confirmed in both region regardless of the presence of the electric field. Based on a three-dimensional numerical model, this orientation results not only due to the acoustic torque but is also caused by the dielectrophoretic torque, which complement each other. The experimental and numerical findings are in excellent agreement and provide deep insights into the underlying physical mechanisms responsible for patterning and orientation of the particles.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"28 10\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10404-024-02762-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02762-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02762-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

驻留表面声波(sSAW)是在片上实验室设备中精确操纵球形和非球形物体的灵活工具。在声学流体设备中操纵悬浮颗粒和细胞主要受声学散射和声学诱导流体流动所产生的声学力的支配,而表面声波本质上与不均匀电场有关。在使用 sSAW 的微流体中,人们较少探讨可极化粒子上的介电泳力和力矩的叠加效应。在本研究中,对声泳和介电泳的物理相互作用进行了深入分析,旨在弥补这一不足。在综合实验中,通过在微通道内局部屏蔽 sSAW 的电场,区分了介电泳对球形和非球形粒子行为的影响。因此,颗粒被迫进入整个通道高度的捕获位置。不过,屏蔽和非屏蔽区域靠近底部的高度位置有所不同。无论本研究中使用的颗粒形状如何,颗粒在有筛分区域都会被逼向底部,而在无筛分区域则会被悬浮起来。这清楚地表明了电场在基底表面附近的影响。此外,最近报道的垂直于超小型超声波压力节点的凸面球体的非直观优先取向在这两个区域都得到了证实,而与电场的存在无关。根据三维数值模型,这种取向不仅是声学力矩造成的,也是介电泳力矩造成的,两者相辅相成。实验结果和数值结果非常吻合,让我们深入了解了粒子图案化和定向的基本物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interplay of acoustophoresis and dielectrophoresis in a standing surface acoustic wave field: from spherical to non-spherical particles

Interplay of acoustophoresis and dielectrophoresis in a standing surface acoustic wave field: from spherical to non-spherical particles

Standing surface acoustic waves (sSAW) emerged as a flexible tool for precise manipulation of spherical and non-spherical objects in Lab-on-a-Chip devices. While the manipulation of suspended particles and cells in acoustofluidic devices is mostly dominated by acoustic forces due to acoustic scattering and the acoustically induced fluid flow, surface acoustic waves are inherently linked to an inhomogeneous electric field. The superimposed effects of dielectrophoretic forces and torques on polarizable particles are less explored in microfluidics using sSAW. In this study, a thorough analysis of the physical interplay of acoustophoresis and dielectrophoresis aims to bridge this gap. In comprehensive experiments, the dielectrophoretic impact on the behavior of spherical and non-spherical particles is distinguished by screening the electric field of the sSAW inside the micro channel locally. As a result, particles are forced into trapping locations across the entire channel height. However, the height position close to the bottom differs between the screened and non-screened region. Regardless of the shape of the particles used in this study, particles are forced towards the bottom at the region with screening, while being levitated at regions without screening. This indicates clearly the influence of the electric field in close vicinity to the substrate surface. Furthermore, the unintuitive preferred orientation of prolate spheroids perpendicular to the pressure nodes of the sSAW recently reported, is confirmed in both region regardless of the presence of the electric field. Based on a three-dimensional numerical model, this orientation results not only due to the acoustic torque but is also caused by the dielectrophoretic torque, which complement each other. The experimental and numerical findings are in excellent agreement and provide deep insights into the underlying physical mechanisms responsible for patterning and orientation of the particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信