Philip C Bentz, John E Burrows, Sandra M Burrows, Eshchar Mizrachi, Zhengjie Liu, Jun-Bo Yang, Zichao Mao, Margot Popecki, Ole Seberg, Gitte Petersen, Jim Leebens-Mack
{"title":"快速多样化的爆发、从南部非洲的扩散以及雌雄异体的两次起源,都是芦笋进化的标志性事件","authors":"Philip C Bentz, John E Burrows, Sandra M Burrows, Eshchar Mizrachi, Zhengjie Liu, Jun-Bo Yang, Zichao Mao, Margot Popecki, Ole Seberg, Gitte Petersen, Jim Leebens-Mack","doi":"10.1093/gbe/evae200","DOIUrl":null,"url":null,"abstract":"The genus Asparagus arose approximately 9–15 million years ago (Ma) and transitions from hermaphroditism to dioecy (separate sexes) occurred ∼3–4 Ma. Roughly 27% of extant Asparagus species are dioecious, while the remaining are bisexual with monoclinous flowers. As such, Asparagus is an ideal model taxon for studying early stages of dioecy and sex chromosome evolution in plants. Until now, however, understanding of diversification and shifts from hermaphroditism to dioecy in Asparagus has been hampered by the lack of robust species tree estimates for the genus. In this study, a genus-wide phylogenomic analysis including 1726 nuclear loci and comprehensive species sampling supports two independent origins of dioecy in Asparagus—first in a widely distributed Eurasian clade, then again in a clade restricted to the Mediterranean Basin. Modeling of ancestral biogeography indicates that both dioecy origins were associated with range expansion out of southern Africa. Our findings also revealed several bursts of diversification across the phylogeny, including an initial radiation in southern Africa that gave rise to 12 major clades in the genus, and more recent radiations that have resulted in paraphyly and polyphyly among closely related species, as expected given active speciation processes. Lastly, we report that the geographic origin of domesticated garden asparagus (Asparagus officinalis L.) was likely in western Asia near the Mediterranean Sea. The presented phylogenomic framework for Asparagus is foundational for ongoing genomic investigations of diversification and functional trait evolution in the genus and contributes to its utility for understanding the origin and early evolution of dioecy and sex chromosomes.","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"45 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bursts of rapid diversification, dispersals out of southern Africa, and two origins of dioecy punctuate the evolution of Asparagus\",\"authors\":\"Philip C Bentz, John E Burrows, Sandra M Burrows, Eshchar Mizrachi, Zhengjie Liu, Jun-Bo Yang, Zichao Mao, Margot Popecki, Ole Seberg, Gitte Petersen, Jim Leebens-Mack\",\"doi\":\"10.1093/gbe/evae200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The genus Asparagus arose approximately 9–15 million years ago (Ma) and transitions from hermaphroditism to dioecy (separate sexes) occurred ∼3–4 Ma. Roughly 27% of extant Asparagus species are dioecious, while the remaining are bisexual with monoclinous flowers. As such, Asparagus is an ideal model taxon for studying early stages of dioecy and sex chromosome evolution in plants. Until now, however, understanding of diversification and shifts from hermaphroditism to dioecy in Asparagus has been hampered by the lack of robust species tree estimates for the genus. In this study, a genus-wide phylogenomic analysis including 1726 nuclear loci and comprehensive species sampling supports two independent origins of dioecy in Asparagus—first in a widely distributed Eurasian clade, then again in a clade restricted to the Mediterranean Basin. Modeling of ancestral biogeography indicates that both dioecy origins were associated with range expansion out of southern Africa. Our findings also revealed several bursts of diversification across the phylogeny, including an initial radiation in southern Africa that gave rise to 12 major clades in the genus, and more recent radiations that have resulted in paraphyly and polyphyly among closely related species, as expected given active speciation processes. Lastly, we report that the geographic origin of domesticated garden asparagus (Asparagus officinalis L.) was likely in western Asia near the Mediterranean Sea. The presented phylogenomic framework for Asparagus is foundational for ongoing genomic investigations of diversification and functional trait evolution in the genus and contributes to its utility for understanding the origin and early evolution of dioecy and sex chromosomes.\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae200\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae200","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Bursts of rapid diversification, dispersals out of southern Africa, and two origins of dioecy punctuate the evolution of Asparagus
The genus Asparagus arose approximately 9–15 million years ago (Ma) and transitions from hermaphroditism to dioecy (separate sexes) occurred ∼3–4 Ma. Roughly 27% of extant Asparagus species are dioecious, while the remaining are bisexual with monoclinous flowers. As such, Asparagus is an ideal model taxon for studying early stages of dioecy and sex chromosome evolution in plants. Until now, however, understanding of diversification and shifts from hermaphroditism to dioecy in Asparagus has been hampered by the lack of robust species tree estimates for the genus. In this study, a genus-wide phylogenomic analysis including 1726 nuclear loci and comprehensive species sampling supports two independent origins of dioecy in Asparagus—first in a widely distributed Eurasian clade, then again in a clade restricted to the Mediterranean Basin. Modeling of ancestral biogeography indicates that both dioecy origins were associated with range expansion out of southern Africa. Our findings also revealed several bursts of diversification across the phylogeny, including an initial radiation in southern Africa that gave rise to 12 major clades in the genus, and more recent radiations that have resulted in paraphyly and polyphyly among closely related species, as expected given active speciation processes. Lastly, we report that the geographic origin of domesticated garden asparagus (Asparagus officinalis L.) was likely in western Asia near the Mediterranean Sea. The presented phylogenomic framework for Asparagus is foundational for ongoing genomic investigations of diversification and functional trait evolution in the genus and contributes to its utility for understanding the origin and early evolution of dioecy and sex chromosomes.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.