热处理时间对硅灰石/CB/CPE 复合材料 PTC 行为的影响

IF 2.3 4区 化学 Q3 POLYMER SCIENCE
Jiaxin Zhao, Hongliang Hu, Dawei Jiang, Yujie Jin, Chun Li, Feng Luo
{"title":"热处理时间对硅灰石/CB/CPE 复合材料 PTC 行为的影响","authors":"Jiaxin Zhao, Hongliang Hu, Dawei Jiang, Yujie Jin, Chun Li, Feng Luo","doi":"10.1038/s41428-024-00956-z","DOIUrl":null,"url":null,"abstract":"<p>Wollastonite (W)/carbon black (CB)/chlorinated polyethylene (CPE) conductive composites were prepared via melt compounding using CB and wollastonite as fillers and CPE as the matrix. To analyze the internal structure of the material and examine how changes in crystallinity affect the positive temperature coefficient (PTC) behavior of the composites, several characterization techniques were employed. These methods included scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. Each method provided insights into the structural adjustments and their implications for the electrical properties of the material. Special attention was given to the influence of the wollastonite content on the electrical conductivity of the composites. The results demonstrated that the lowest room-temperature resistivity (1.66 Ω·cm) was achieved with 15 wt.% wollastonite doping after 1 h of heat treatment. At the same time, the PTC strength increased to 4.7.</p>","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"92 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of heat treatment time on the PTC behavior of wollastonite/CB/CPE composites\",\"authors\":\"Jiaxin Zhao, Hongliang Hu, Dawei Jiang, Yujie Jin, Chun Li, Feng Luo\",\"doi\":\"10.1038/s41428-024-00956-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wollastonite (W)/carbon black (CB)/chlorinated polyethylene (CPE) conductive composites were prepared via melt compounding using CB and wollastonite as fillers and CPE as the matrix. To analyze the internal structure of the material and examine how changes in crystallinity affect the positive temperature coefficient (PTC) behavior of the composites, several characterization techniques were employed. These methods included scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. Each method provided insights into the structural adjustments and their implications for the electrical properties of the material. Special attention was given to the influence of the wollastonite content on the electrical conductivity of the composites. The results demonstrated that the lowest room-temperature resistivity (1.66 Ω·cm) was achieved with 15 wt.% wollastonite doping after 1 h of heat treatment. At the same time, the PTC strength increased to 4.7.</p>\",\"PeriodicalId\":20302,\"journal\":{\"name\":\"Polymer Journal\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41428-024-00956-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41428-024-00956-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

硅灰石(W)/炭黑(CB)/氯化聚乙烯(CPE)导电复合材料以炭黑和硅灰石为填料,氯化聚乙烯为基体,通过熔融复合制备而成。为了分析材料的内部结构并研究结晶度的变化如何影响复合材料的正温度系数(PTC)行为,研究人员采用了多种表征技术。这些方法包括扫描电子显微镜、X 射线衍射和差示扫描量热法。每种方法都有助于深入了解结构调整及其对材料电特性的影响。研究人员特别关注了硅灰石含量对复合材料导电性能的影响。结果表明,在热处理 1 小时后,掺杂 15 wt.% 硅灰石的室温电阻率最低(1.66 Ω-cm)。同时,PTC 强度增加到 4.7。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of heat treatment time on the PTC behavior of wollastonite/CB/CPE composites

Effect of heat treatment time on the PTC behavior of wollastonite/CB/CPE composites

Wollastonite (W)/carbon black (CB)/chlorinated polyethylene (CPE) conductive composites were prepared via melt compounding using CB and wollastonite as fillers and CPE as the matrix. To analyze the internal structure of the material and examine how changes in crystallinity affect the positive temperature coefficient (PTC) behavior of the composites, several characterization techniques were employed. These methods included scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. Each method provided insights into the structural adjustments and their implications for the electrical properties of the material. Special attention was given to the influence of the wollastonite content on the electrical conductivity of the composites. The results demonstrated that the lowest room-temperature resistivity (1.66 Ω·cm) was achieved with 15 wt.% wollastonite doping after 1 h of heat treatment. At the same time, the PTC strength increased to 4.7.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Journal
Polymer Journal 化学-高分子科学
CiteScore
5.60
自引率
7.10%
发文量
131
审稿时长
2.5 months
期刊介绍: Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews. Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Polymer synthesis and reactions Polymer structures Physical properties of polymers Polymer surface and interfaces Functional polymers Supramolecular polymers Self-assembled materials Biopolymers and bio-related polymer materials Polymer engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信